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Abstract

Fully automated algorithms are inadequate for a number of data analysis tasks, especially those in-

volving images, video, or text. �us, there is o�en a need to combine “human computation” (or

crowdsourcing), together with traditional computation, in order to improve the process of under-

standing and analyzing data. However, most datamanagement applications currently employ crowd-

sourcing in an ad-hoc fashion; these applications are not optimized for low monetary cost, low la-

tency, or high accuracy. In this thesis, we develop a formalism for reasoning about human-powered

datamanagement, and use this formalism to design: (a) a toolbox of basic data processing algorithms,

optimized for cost, latency, and accuracy, and (b) practical data management systems and applica-

tions that use these algorithms. We demonstrate that our techniques lead to algorithms and systems

that expend very few resources (e.g., time waiting, human e�ort, or money spent), while providing

just as high quality results, as compared to approaches currently used in practice.
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Chapter 1

Introduction

We are drowning in information, while starving for wisdom.
— E. O. Wilson

With the advent of the “data deluge” [176], organizations world-wide have been struggling with

designing algorithms and systems to better process and analyze the massive quantities of data col-

lected every day. It is estimated that 80%of this data is unstructured [101,191], i.e., consisting largely of

images, videos, and raw text. While there have been signi�cant advances in automated mechanisms

for interpreting and extracting information from unstructured data, algorithms to fully comprehend

unstructured data have not been developed yet. It is widely acknowledged that we are at least several

decades away from this goal [123, 165].

For this reason, using humans to analyze certain aspects of unstructured data can be crucial. Hu-

mans have an innate understanding of language, speech, and images; they are able to process, reason

about, and provide solutions to problems faced o�en in managing and processing unstructured data.

Moreover, the abundance of cheap and reliable internet connectivity throughout the world has given

rise to “crowdsourcing”marketplaces, such asMechanical Turk [14] andODesk [17], enabling the use

of humans to process data on demand.

In particular, crowdsourcing has been applied in the following large-scale unstructured data

management applications:

● Content Moderation: Humans in crowdsourcing marketplaces are o�en used for content mod-
eration of images uploaded on web sites [5]. �at is, humans are asked to determine whether

each user-uploaded image is appropriate to be viewed by a general audience.

● Web Extraction: Humans are also used for information extraction from web sites. �at is,
humans are asked to provide speci�c information by looking up web sites and �nding, say,

1
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phone numbers or addresses of restaurants. Humans may also be used to aid semi-automatic

information extraction systems—for instance, Yahoo! [24] uses crowdsourcing to build web

extraction wrappers, and to verify extracted information [47, 66, 90, 91, 151].

● Search Relevance: Most search companies, e.g., Bing [15], Google [11], Yahoo!, use humans to
evaluate the performance of their search algorithms [31].

● Entity Resolution: Entity Resolution, or deduplication [83] refers to the problem of identifying
if two textual records refer to the same entity. Groupon and Yahoo! both use crowdsourcing

for entity resolution [39, 106, 107].

● Text Processing: Crowdsourcing is used in spam identi�cation [145], text classi�cation [34,173],
translation [195], and text editing [41].

● Video and Image Processing: Crowdsourcing is used in video analysis [56], for image label-
ing [164, 183], and in visual aids [45].

Unfortunately, in all of these applications, and overall, crowdsourcing can be subjective or error-

prone; it can be time-consuming (humans take longer than computers); and it can be relatively costly

(humans need to be paid). Moreover, these three aspects—accuracy, latency, and cost—are correlated

in complex ways, making it di�cult to optimize the trade-o�s among them while designing data

processing algorithms and systems.

Returning to contentmoderation of images (the �rst item in the list of applications above), we can

ask one human to verify if each image is appropriate, but they may make mistakes. So, we may need

to askmultiple humans to verify each image. However, askingmultiple humans has higher monetary

cost, and may have higher latency. Furthermore, we can ask multiple humans to verify each image in

parallel, or ask humans in sequence. �e former option will have lower latency, while the latter may

have lower monetary cost (since we can choose to not ask subsequent questions based on answers to

previous ones).

�erefore, all of these applications (and many others) could bene�t signi�cantly from an e�ort

to optimize accuracy, cost, and latency in human-powered data processing algorithms and systems.

1.1 �esis Overview and Contributions

�e goal of this thesis is to:

develop a formalism for reasoning about human-powered data processing, and use this
formalism to design: (a) a toolbox of basic data processing algorithms, optimized for cost,
latency, and accuracy, and (b) practical data management systems and applications that
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Part I: Crowd-Powered Algorithms

Simple Filter Chapter 3 [152]

Advanced Filter Chapter 4 [149]

Find Chapter 5 [168]

Max Chapter 6 [92]

Categorize Chapter 7 [155]

Part II: Crowd-Powered Applications
DataSi� Chapter 8 [150]

Peer Evaluation Chapter 9 [149]

Table 1.1:�esis Summary. (Deco [153, 154, 156, 158], another crowd-powered application we have contributed

to, is not included in this thesis.)

use these algorithms.

Our �rst and primary objective is to develop the toolbox of basic data processing algorithms, and

the description of the toolbox forms a large part of this thesis. Subsequently, we use these algorithms

to develop practical data management systems, which we also describe in this thesis. �e main

parts of the thesis, as well as the associated chapters and published papers, are shown in Table 1.1.

In addition, Chapter 2 introduces some necessary background on crowdsourcing, while Chapter 10

discusses related work.

1.1.1 Part I: Crowd-Powered Algorithms

In the �rst part of the thesis, our focus is ondesigning algorithms that use humans as “data processors”,

i.e., when human involvement can be abstracted as functions or subroutines applied on data elements

— we call these crowd-powered algorithms. As an example, we may design a crowd-powered sorting
algorithm where humans perform pairwise comparisons, or provide ratings to individual items. We

design crowd-powered algorithms for the following problems:

1) Simple Filter: (Chapter 3, Reference: [152])

Here, our goal is to design an algorithm to �lter a set of items using humans. �at is, we want to

use humans to identify which of a large set of data items satisfy a certain predicate. �is problem is

commonplace in crowd-powered applications, such as content moderation, spam identi�cation, and

search relevance. Since humans make mistakes, it is not su�cient to simply check for every item,

by asking one human, whether it satis�es the predicate. We may instead show each item to multiple

people and somehow combine the answers, e.g., if 2 out of 3 vote yes, then we say the item satis�es

the predicate. But what is the right way to combine the votes? Simply taking the majority may not
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always be the best approach, for instance, when it is known that most items satisfy the predicate. Fur-

thermore, we may not have an unlimited budget to do our �ltering. So how do we select a �ltering

strategy that, for instance, minimizes cost (e.g., total number of questions asked) while keeping over-

all error below a desired threshold? We �nd that strategies can be completely characterized using a

two-dimensional representation. We show that while the number of strategies is exponential, there

are e�cient algorithms that can �nd optimal or near-optimal strategies, optimizing cost and accu-

racy. We demonstrate that these strategies achieve 20-30% cost reduction as compared to heuristics

used in practice.

2) Advanced Filter: (Chapter 4, Reference: [149])

Here, our goal is to generalize our �ltering algorithm from Chapter 3 in a number of directions. We

provide algorithms for: (a) Incorporation of abilities: adapting �ltering to take into account individ-

ual worker abilities. (b) Integration with prior information: combining �ltering with prior informa-

tion about items, say from a machine learning algorithm. (c) Latency constraints: providing latency

guarantees in addition to cost and error guarantees. (d) Scoring: identifying the scores of items as

between 1 . . . u, instead of boolean �ltering. All of these generalizations require signi�cant changes
to the representation of the strategies considered in �ltering. In some cases, these representations

themselves become intractable to store. For these cases, we describe a new representation scheme

that is (a) approximate, but asymptotically optimal—that is, the representation will tend to capture

all the information in the previous (intractable) representation as we increase the granularity of the

representation (b) e�cient—that is, the representation is compact to store, and the algorithm that

determines the optimal strategy for �ltering has low latency.

3) Find: (Chapter 5, Reference: [168])

Here, our goal is to design an algorithm to �nd, in a given data set, a pre-speci�ed number of items

that satisfy a certain predicate. For instance, we may want humans to identify 20 travel photos from

a data set of 10,000 photos to display on a travel website, or a candidate set of 10 resumes that meet

certain job requirements from a large pool of 500 applicants. For this problem, it is not su�cient to

simply adapt techniques from �ltering; in fact, we show that using techniques optimized for �ltering

can be arbitrarily monetarily expensive for the �nding problem. In fact, for �nding, we need to focus

on a small set of items that are the most “promising”, i.e., that are likely to help solve the problem.

However, it is not clear how small this set should be: for instance, if we focus on too small a set, we

may take too long to �nd the desired set of items, and if we focus on too large a set, then we may end

up spending too much money. We develop algorithms to generate strategies for the �nding problem
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that are optimal, i.e., the strategies lie on the skyline of cost and latency, for a �xed accuracy threshold.

4) Maximum: (Chapter 6, Reference: [92])

Given that each item in a data set has a certain inherent quality, our goal is to design an algorithm to

�nd the item with the highest quality. For instance, we may want to use humans to �nd the pro�le

photo that best depicts a given person; or the song that is the catchiest among all the songs of a

given musical band. We focus on pairwise votes, that is, we provide humans two items and ask them

to pick the one of higher quality. When asking two humans to compare the same pair of items, they

may give us di�erent answers, because one or bothmay havemade amistake, or because the question

is inherently subjective. Either way, we may need to aggregate pairwise votes frommultiple humans,

possibly asking multiple humans the same question, in order to increase our con�dence in the �nal

answer. Of course, executing more votes increases the cost as well as latency of the algorithm. We

study two problems: given a set of pairwise votes, (a) what is our current best estimate for the highest

quality item? (b) if we want to invoke more votes, which are the most e�ective ones to issue to the

crowdsourcing marketplace? We show that both these problems are NP-Hard, even for a relatively

simple model of human error. We also design heuristic algorithms that do extremely well in solving

both these problems.

5) Categorize: (Chapter 7, Reference: [155])

Here, our goal is to design an algorithm for categorization, i.e., an algorithm that uses humans to

categorize an item into a taxonomy of concepts. For instance, we may want to use humans to iden-

tify the most appropriate category in a taxonomy for a new Amazon product. We focus on asking

people categorization questions of the form “does this item belong to a speci�c category?” Asking

categorization questions corresponding to nodes or categories in the taxonomy that are close to the

roots (very general questions) are more likely to receive a positive answer, while asking categoriza-
tion questions corresponding to nodes that are close the the leaves (very speci�c questions) are more
likely to receive a negative answer. Asking categorization questions in the “middle” nodes may give

more information. Furthermore, the order of questions asked is important as well. Getting a YES

or a NO answer to a categorization question may eliminate the need to ask some other categoriza-

tion questions. We study the problem of deciding which categorization questions to ask, on varying

various dimensions: (a) number of target categories: one or multiple, (b) type of taxonomy: general

graph or tree, (c) objective: eliminate as many categories as possible, or precisely identify the target

categories. We �nd that while the general problem is NP-Hard, there are special cases for which we

can �nd e�cient solutions that eliminate 10X more nodes than naive schemes.
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1.1.2 Part II: Crowd-Powered Systems/Applications

In the second part of the thesis, our focus is on designing novel systems and applications that use

crowd-powered algorithms as building blocks, thereby demonstrating the utility of these algorithms.

In addition, this part reveals that there are additional optimization challenges in designing and assem-

bling crowd-powered applications and systems beyond those tackled in Part I.We study the following

applications:

1) DataSi�: (Chapter 8, Reference: [150])

Here, our goal is to improve information retrieval using humans. Traditional information retrieval

systems have limited functionality. For instance, they are not able to adequately support queries

containing non-textual fragments such as images or videos, queries that are very long or ambigu-

ous, or semantically-rich queries over non-textual corpora. To address these problems, we designed

DataSi�, an expressive and accurate crowd-powered search toolkit that can connect to any corpus,

e.g., corpora containing products, web sites, or images. We consider a number of alternative con�gu-

rations for DataSi� using crowdsourced and automated components, and demonstrate gains of 2–3x

on precision over traditional retrieval schemes using experiments on real corpora.

2) Peer Evaluation System: (Chapter 9, Reference: [149])

Here, our goal is to improve crowdsourced evaluation inMOOCs (MassiveOpenOnlineCourses) [36].

MOOCs have gained prominence in the last few years, with several institutions and organizations,

such as Coursera, Udacity, and EdX, o�ering MOOCs on a variety of subjects. Many of these sub-

jects have assignments and exams that cannot be automatically evaluated, e.g., psychology, sociology,

literature, poetry, and history. �us, peer grading is used to evaluate these assignments. However,

peer grading is currently used in an ad-hocmanner—each submission is evaluated by a �xed number

of randomly selected peers. We adapt crowd-powered algorithms from Chapter 4 for more e�ective

peer grading. Our techniques provide the same cost guarantees as the current ad-hoc mechanisms,

while signi�cantly improving the accuracy of the results. As we show in real experiments onMOOC

data, our techniques can reduce error in grade estimation by up to 40%.

We now brie�y describe yet another system that we have contributed to that could bene�t from our

optimized crowd-powered algorithms. �is system is not included as part of this thesis.

3) Deco: (References: [153, 154, 156, 158])

Here, our goal is to design a crowd-powered database system. In many applications, we can view

human-generated data as a data source, so naturally, one would like to seamlessly integrate the crowd
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Discipline Perspectives

Human Computer Interaction Better interface design; novel interaction mechanisms

Machine Learning Using humans for training data; improving crowdsourcing

Social Science Behavioral experiments; motivations; demographic studies

Game�eory Pricing; incentives; game design

Algorithms and Databases (Us) Using humans as data processors; optimization

Table 1.2: Summary of Perspectives

data source with other conventional sources, so that the end user can interact with a single, uni�ed

database. Furthermore, one would like a declarative system, where the end user describes the needs,

and the system dynamically �gures out what crowd data to obtain and how it must be obtained, and

how itmust be integratedwith other data. Deco is a a database system that answers declarative queries

posed over stored relational data, the collective knowledge of the crowd, as well as other external data

sources. While declarative access to crowd data is appealing and natural, there are many challenges.

For instance, it is not obvious (a) how the schema designer can specify mechanisms using which

data can be obtained from the crowd (b) what the crowdsourced database system should store —

cleansed, or uncleansed data (c) how the query processor should deal with the complexity of human

data sources — for instance, the latency of humans responses, the resolution of disagreements, and

the satisfaction of constraints, e.g., latency, cost, or accuracy.

1.2 Overview of Related Perspectives

In this section, to situate this thesis in relation to other work on crowdsourcing, we present a brief

overview of how di�erent academic communities approach crowdsourcing research, summarized in

Table 1.2. We defer a detailed study of related work to Chapter 10, where the perspectives of these

communities will be considered in greater depth. (Work related to speci�c chapters will be presented

as part of those chapters.)

�e Human Computer Interaction (HCI) community has been focused on developing new plat-

forms for interaction with human workers. �is community was the �rst to design a toolkit for har-

nessing crowdsourcing through programs [130]. More recently, this community has studied novel in-

terfaces for collaboration (for editing [41] or planning [126]) and assistance (for disabled people [45]

or photographers [40]).

�e Machine Learning (ML) community views humans as providers of training data for ML

algorithms. �ere has been a lot of work in Active Learning [169] on selecting training examples
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to label to best improve ML. �ere has also been some recent work on applying ML to optimize

crowdsourcing. For instance, ML has been used to estimate the quality of workers once data has

been collected, for example, see [162].

�e Social Science community has primarily used crowdsourcing for behavioral research, for

example, see [118, 137], while the Game �eory community has looked into incentivizing human

workers better, via games [183], and by varying pricing [55].

In our work, we view humans as (potentially error-prone) data processors or data sources. Our

focus is on systematically optimizing the use of humans in data processing algorithms and systems.
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Background

In this chapter, we begin by providing a primer on crowdsourcing and crowdsourcingmarketplaces as

applicable to this thesis, followed by our perspective on humans as data processors, and then conclude

with a description of notation that is used across chapters.

2.1 Crowdsourcing Mechanisms

�ere are many con�icting opinions [159] on what “crowdsourcing” actually means, and whether

crowdsourcing is indeed the same concept as “human computation”. We avoid this debate by re-

de�ning crowdsourcing or human computation to mean the same thing:

From [181]: “Crowdsourcing (or Human Computation) is a paradigm that utilizes human
processing power to solve problems that computers cannot yet solve.”

Crowdsourcing Marketplaces: �ere are a number of online crowdsourcing marketplaces where

users post tasks, and specify a monetary compensation and time limit for those tasks. �e canonical

example of a crowdsourcing marketplace is Amazon’s Mechanical Turk [14]; other examples include

Samasource [18], ODesk [17], Clickworker [3], and Crowd�ower [6]. �ere are estimated to be over

30 crowdsourcing marketplaces, and these marketplaces are growing rapidly, quadrupling in overall

size in 2010 and 2011, with the total revenue reaching $400M US Dollars in 2011 [20].

�e structure of marketplaces vary, but a representative work�ow is as follows: Human workers

(or simply humans, or workers) who are online in a marketplace can browse through tasks, choose

the ones they are interested in, and work on them. Workers who solve the tasks within the time

limit are awarded the monetary compensation speci�ed by the task creator. �e same task may be

9
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attempted simultaneously by multiple workers. If so, the workers work on the task independently,

and each one is compensated.

In this thesis, we use “tasks” to mean what is conventionally referred to as microtasks, i.e., those

that take a few minutes at most to complete (e.g., labeling an image) instead of long-running tasks

that take days or weeks to complete (e.g., writing an essay).

Voluntary or Gaming-based Crowdsourcing: In addition to crowdsourcingmarketplaces, there are

other mechanisms to get humans to work on tasks. One such mechanism is to solicit volunteers to

work on tasks for a worthy cause. As an example, volunteers were asked to help translate tweets

during the Haiti earthquake [197], or help identify galaxies in astronomical images [160, 190]. Yet

another mechanism relies on games [183]. In this mechanism, people play games for fun, without

realizing that the games are, in fact, tasks that need to be solved.

Even though our focus is on crowdsourcing marketplaces, the optimized crowd-powered algo-

rithms developed in this thesis can also be used in voluntary or gaming mechanisms, since there is

still a limited budget of “human attention” that those mechanisms have that can be treated as analo-

gous to monetary cost in crowdsourcing marketplaces.

2.2 Interacting with a Crowdsourcing Marketplace

We now describe how our crowd-powered algorithms and systems (as described in Section 1.1.1

and 1.1.2) interact with a crowdsourcing marketplace. An informal diagram of the interaction is

shown in Figure 2.1. Our algorithms and systems operate on data items, e.g., images, videos, or

text, and construct tasks to be asked to humans. �ese tasks are expressed using HTML (hosted

externally in our case), and posted on the crowdsourcing marketplace using an API speci�c to the

marketplace. (Recall, as we discussed in the previous section, while posting the task, we need to also

specify the monetary reward and the time limit, but our focus in this section is on tasks.) �ese

tasks are answered by humans independently. Once answers to these tasks are provided back to the

crowd-powered algorithm or system, the algorithm or system may choose to issue additional tasks

once again, or may instead terminate.

Since humans may be concurrently working on di�erent tasks, we can view the algorithm or sys-

tem as making humans work on tasks “in parallel”, waiting for their responses, then making humans

work on additional tasks “in parallel”, and so on. However, note that the system can in fact issue new

tasks to the crowdsourcing marketplace before the outstanding ones are complete.

We provide examples of these tasks next.
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Crowd-Powered 
Algorithm / System! Items!

Marketplace!

Tasks! Answers!

Human Workers!

Figure 2.1: Interacting with a Marketplace

Example Tasks

We show two example tasks, as seen by workers, in Figures 2.2, and 2.3. Once a human worker

completes either of these tasks, he/she can click on the submit button to get compensated for their

e�ort.

�e �rst task consists of a batch (speci�cally, four) of “�ltering questions”, that is, questions check-

ing if speci�c items (in this case, images) satisfy a given �ltering predicate (in this case, whether they

do or do not have a watermark). In this task, notice that only the last image does not have a water-

mark; while it is easy to make out the watermark in the �rst and third images, the watermark in the

second image is much harder to distinguish from the rest of the image (that is, human workers may

be more likely to make a mistake on this image instead of the other images). �us, ensuring that we

get correct answers for �ltering questions on some items may be more di�cult than others.

�e second task consists of a batch of four “rating questions”, that is, questions requesting ratings

for speci�c items (once again, images) for the predicate “how funny it is”. In this task, since humor is

subjective, di�erent human workers may have di�erent opinions on what constitutes a funny image;

furthermore, someworkersmay bemuchmore generous than others in providing high ratings. �us,

given various worker answers, inferring the true rating for each image is not trivial.
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Figure 2.2: Filtering Task
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Figure 2.3: Rating Task
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Humans as Data Processors

In general, we treat humans answering questions as function or subroutine calls with data items as

arguments. For instance, in the questions that comprise the tasks above, the arguments are images,

and the function or subroutine call takes as input an image, and: (a) returns a booleanYES/NOoutput

for the �rst type of question (b) returns a rating 1—5 for the second type of question. �is abstraction

enables us to treat human involvement as potentially error-prone, costly, and time-consuming “data

processors” that can be called from within crowd-powered systems and algorithms. Naturally, the

latency, cost, and accuracy of each function or subroutine call will depend on the speci�c human

(some humans may be better than others, and as we saw for the rating case, di�erent humans may

have di�erent biases), and on the item(s) under consideration (some items may be more prone to

errors than others like in the �ltering case).

Of course, treating humans as data processors is certainly a simpli�cation: humans are incred-

ibly complex, and simple models or abstractions are likely to not be accurate depictions of human

behavior. Nevertheless, even with these simple models we will �nd that (a) the problems are still

challenging (b) we can obtain substantial bene�ts in practice. It remains to be seen if more intricate

abstractions of human involvement will provide additional bene�ts.

Questions Answerable by Humans

�e �ltering and rating questions described above are just two types of questions we consider. �e

entire list of question types we consider in this thesis is shown in Table 2.1 annotated with the respec-

tive chapters. Most of these questions take as input one or more items from domain I . �eymay also
take other inputs (e.g., for categorization, we take as input a category from domain C).

�ese questions types are su�cient and powerful enough to capture all human interaction in our

systems and algorithms. Furthermore, these questions are amenable to analysis and optimization,

unlike more free-form questions, for example, “write an essay on topic X”.

Given a question or a batch of questions, there are many interesting issues in designing the inter-

face to improve worker satisfaction and answer quality (including pop-out, anchoring [118]). While

these considerations are important and useful, they are not the focus of study in this thesis. In this

thesis, we leverage prior work to build pre-optimized interfaces for individual questions, and our

goal is to use the pre-optimized question templates or interfaces in the best manner to minimize

cost, latency, and error in applications.
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Problem Chapter No. Question Type Signature

Filter, Find 3, 4, 5 “Does this item satisfy the �lter?” (I → {0, 1})
Advanced Filter 4 “What is the score of this item?” (I → {0 . . . u})
Maximum 6 “Which of these items has higher quality?” (I × I → {0, 1})
Categorize 7 “Does this item fall under this category” (I × C → {0, 1})

Table 2.1: Data Processing Question Types

2.3 Notation

For easy reference, we summarize the notation used in the thesis in Tables 2.2 and 2.3. �e notation

that applies to the entire thesis forms the �rst block of rows, while the subsequent blocks list notation

that applies to speci�c chapters. �e table is presented here for the reader’s future reference; we do

not expect the reader to understand all the symbols at this point.
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Relevant Chapters Quantity Notation

Entire �esis

Set of Items I
Number of Items n
Individual Item I
Multiset of Questions Asked Q
Error Rate e
Error in Output E
Monetary Cost C
Latency T
Additional Number of Questions b
Probabilities p

Filtering, Filtering

Generalizations,

and Peer

Evaluation

(Chapters 3, 4, 9)

Filters f1, . . . , fl
Filtering Strategy F
Cost �reshold m
Intrinsic Value of item V
State Variable S , R
Selectivity s
Fractional Paths path
Probabilistic Decision apass/ f ail/cont
Workers w1, . . . ,wr
Ratings 0 . . . u
Distinct Selectivities l
Number of Discrete Di�culty Values d
Discretization Factor δ

Finding (Chapter 5)

Desired Items k
State of Knowledge SK
Filtering Algorithm A
Approximation factor α, β
Cost to Next Item Cnext
Number of Questions a
Number of Phases q

Table 2.2: Table of Notation
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Relevant Chapters Quantity Notation

Maximum

(Chapter 6)

Inherent Quality ci
Permutation π, πd
Vote Matrix and Votes W ,w
Scoring Functions score , f inal
Vote Graph Gv(V ,A)
Damping Factor γ
Degree of Vertex d

Categorization

(Chapter 7)

Taxonomy G(V , E), ∣V ∣ = n
Nodes in Graph u, v
Set of Nodes U
Answers to Questions q(u,U)
Preceding Set, Reachable Set pset, rset
Candidate Set of Categories cand

DataSi�

(Chapter 8)

Query Q , TQ
Number of Humans h
Number of Suggested Reformulations s
DataSi� Components G,F,R,W, S
Number of Positive and Negative Responses x , y
Number of Desired Items k
Weights w
Number of Items Retrieved n

Table 2.3: Table of Notation (continued)
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Chapter 3

Algorithm 1: Filtering

3.1 Introduction

In this chapter, we develop algorithms that design optimized strategies for crowd-powered �ltering1.

For example, wemay have a data set of images, and wemay want to �nd all images that satisfy a given

set of properties. We need to use humans to decide if the images have the particular properties. We

use the term �lter for each of the properties we wish to check. For instance, one �lter could be “image
shows a scientist,” and another could be “people in image are looking at camera.” If we apply both

�lters, we should obtain images of scientists looking at the camera. �e emphasis in this chapter is

on applying a single �lter, however, we also provide extensions to conjunctions of �lters.

�is chapter, being our �rst technical chapter, will also serve to formalize our model of human

computation (i.e., abstracting human involvement as calls to error-prone data processors), as well

our objectives of cost and error.

At �rst sight, the problem of checking which of a set of items satisfy a �lter seems trivial: Simply

take each item in turn, and ask a human a question: Does this item satisfy the �lter? �e solution
is the subset of items that received a positive answer. Since humans may make mistakes, we may

not get a desirable solution with such a simple strategy. We may instead show each item to multiple

people and somehow combine the answers, e.g., if 2 out of 3 vote yes, then we say the item satis�es

the �lter. But what is the right way to combine the votes? And howmany questions should we ask per

item? Does it matter if humans are more likely to make false positive mistakes, as opposed to false

negatives? And what if we know a priori that most items are very likely to satisfy the �lter? How does

1
�is chapter is adapted from our paper [152], published at ACM SIGMOD 2012, written jointly with Aditya Ramesh,

Hector Garcia-Molina, Hyunjung Park, Neoklis Polyzotis, and Jennifer Widom

18
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this knowledge change our �ltering approach? Furthermore, we may not have an unlimited budget

or time to do our �ltering. So how do we select a �ltering strategy that, for instance, minimizes costs

(e.g., total number of questions asked) while keeping overall error below a desired threshold, or vice

versa?

Filtering with humans is reminiscent of statistical hypothesis testing [187]. While the underlying

model is similar to ours (our hypothesis is that an item satis�es a �lter), the fundamental di�erence

with our work is in the optimization criteria: With hypothesis testing, one wishes to ensure that

the decision on each item meets an error or cost bound. In our case, on the other hand, we �lter

a large set of items, and our bounds are on the overall error or cost. In Section 3.2 we argue that
these optimization criteria are o�en desirable in crowdsourcing for large data sets. Furthermore, in

Section 3.7 we show that use of our criteria can lead to substantial cost savings over the traditional,

more conservative approach.

Emerging crowdsourcing applications [31, 34, 130, 173, 195] have implemented various types of

�ltering (e.g., majority voting), but have not studied how to implement optimal �ltering strategies.

Prior work on using human feedback for database information integration [139] (which we will show

is worse than our strategies) uses a heuristic approach to solve the problem. Previous work has also

looked at the problem of deciding how and when to obtain labels for machine learning [81, 171, 188],

but not the problem of minimizing cost. We revisit related work in more detail in Section 3.8.

Filtering is critical in crowd-powered database systems, since it can be used for the implemen-

tation of the selection operator that is present in most database queries. In addition, �ltering can

be used for data cleaning (when the decision of whether a data item is valid or not requires human

input) and for data generation and population (when humans providemissing data items or attribute

values). Furthermore, the optimization objectives in our approach are designed speci�cally to give

the most savings over very large data sets, a typical scenario in database systems.

Filtering is also of independent interest in human computation. Indeed, almost every crowd-

sourcing application performs some form of �ltering [31, 34, 86, 130, 135, 173, 195]. For example, de-

tecting spam websites in a set of websites, or categorizing a set of images into a few categories (both

common tasks on Amazon’s Mechanical Turk [14]), are instances of the single-�lter problem. Rele-

vance judgments for search results [31], where the task is to determine whether a web-page is relevant

or not for a given web-search query, is another instance.

3.1.1 Outline of Chapter

Here is the outline of this chapter:
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● We identify the interesting dimensions of the single �lter problem, which in turn reveal which
parameters of the problem can be constrained or optimized in a meaningful manner. We for-

mulate �ve di�erent versions of the problem under constraints on these parameters. We also

develop a novel grid-based representation to reason about strategies for the problems that we

describe. (Section 3.2)

● For deterministic strategies, we develop an algorithm that designs an approximately optimal
deterministic strategy (for the cases where we de�nitely want a deterministic strategy due to

simplicity of representation or not having to generate random numbers). (Section 3.3)

● For probabilistic strategies, we develop a linear programming solution to produce the optimal
probabilistic strategy. (Section 3.4)

● We discuss other versions of the problem constructed by constraining cost and accuracy in
various ways. (Section 3.5)

● We describe how our techniques can be extended to the problem of multiple �lters. (Sec-
tion 3.6)

● Weshow through experiments that our algorithms performexceedinglywell compared to stan-
dard statistics approaches as well as other naive and heuristic approaches. (Section 3.7)

3.2 Preliminaries

For themajority of this chapter, we consider the single �lter problem, but we do generalize tomultiple

�lters in Section 3.6. Also, we assume that our �lters are “binary” (i.e., they simply return YES or

NO), rather than the “n-ary” �ltering case, where the �lters may return one out of a set of n disjoint
independent alternatives. (�is “n-ary” problem is relevant when we are classifying each item into

exactly one out of a set of indepenent classes, e.g., assigning colors.) Our techniques generalize in a

straightforward fashion to the “n-ary” �ltering problem.

Filtering into n disjoint independent classes is di�erent from and simpler than the generalization
of scoring, which we consider in Chapter 4, where we score items as being one out of 1 . . . n. In the
scoring problem, the n alternatives are not independent of each other (e.g., score of 1 is closer to a
score of 2 than a score of 5). Lastly, �ltering into n independent classes is di�erent from and simpler
than the generalization of categorization into a taxonomy, which we consider in Chapter 7. In the

latter case, once again, the alternatives are not independent of each other, and are in fact related to

each other via a hierarchical relationship.
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Figure 3.1: (a) Representation of a Triangular Strategy (b) Representation of a Rectangular Strategy

3.2.1 Formal De�nitions

We are given a set of items I , where ∣I∣ = n. We introduce a random variableV that controls whether
an input item satis�es the �lter (V = 1) or not (V = 0). �e selectivity of our �lter, s, gives us the
probability that V = 1 (over all possible items). �e selectivity may be estimated by sampling on a
small number of items or by using prior history. (�e sampling approach is commonly used by query

optimizers to estimate the size of a selection operator.)

However, we assume there is no automated mechanism to determine whether an item satis�es

the �lter or not. �e only type of action the algorithm can perform on an item is to ask a human a

question. �e human can tell us YES (meaning that he/she thinks the item satis�es the �lter) or NO.
�e human can make mistakes, and in particular:

● �e false positive rate is: Pr[answer is YES∣V = 0] = e0
● �e false negative rate is: Pr[answer is NO∣V = 1] = e1

(We use two distinct probabilities of error because our experience with Mechanical Turk indicates

that the false positive rate and false negative rate for a �lter can be very di�erent.) We can ask di�erent

humans the same question to get better accuracy, and we assume that their errors are independent.

(�us we assume all humans are able to answer the question with the same degree of accuracy.) As we

will see in the rest of this chapter, �ltering is a challenging problem even a�ermaking this assumption.

We consider the case of correlated answers, di�ering degrees of competence of humans, and
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Figure 3.2: Error at Terminating Points vs. Overall Error

di�ering costs for humans with di�erent expertise in the next chapter.

A strategyF is a computer procedure that takes as input any one item, asks one or more humans
questions on that same item, and eventually outputs either “Pass” or “Fail”. A Pass output represents

a belief that the item satis�es the �lter, while Fail represents the opposite. Of course, a strategy can

also make mistakes, and our job will be to design good strategies, i.e., ones that “make few mistakes

without asking too many questions”. We will express this goal more formally later. Note that in

relation to Figure 2.1, the strategy is the crowd-powered algorithm. In this chapter we also use the

term “algorithm” when describing our procedure that, given parameters and constraints, generates a

strategy.

�e state of processing of an item can be completely represented using the pair (x , y), where x is
the number of NOs received so far, and y is the number of YESs received so far. �erefore, a strategy
can be visualized or represented using a two-dimensional grid like the one in Figure 3.1(a). �is two-

dimensional grid captures what the strategy does at each state. �e Y axis represents the number of
YES answers obtained so far from humans, while the X axis is the number of NO answers so far.
A grid point at (x , y) determines what the strategy does a�er x NOs and y YESs have been

received from humans: A blue grid point indicates that the strategy outputs Pass at this point, i.e.,

F(x , y) = Pass, while a red point indicates a Fail decision, i.e., F(x , y) = Fail. We call a point that

is either blue or red a termination point. At a green point no decision is made and the strategy issues
another question, and thus moves to either (x , y+ 1) (if an additional YES is received) or to (x+ 1, y)
(if a NO is received). We call green points continue points, i.e., we continue to ask questions, and
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we have F(x , y) = Cont. Notice that we are overloading our use of the term “strategy” to mean

two things: (a) the code that operates on an item, and eventually returns Pass or Fail, (b) a decision

function, de�ned over all reachable states, that takes as input a state (x , y), and outputs a decision
for that state (Pass, Fail, Cont). �e use will be clear from the context.

Overall, the evaluation of an item starts at (0, 0) (no questions have been asked), and moves
through the grid until hitting either a blue or red grid point; the white points are not reachable under

any circumstances. Our example in Figure 3.1(a) depicts a strategy that always asks a �xed number

of questions, in this case 4. �us, the termination points are along the x + y = 4 line. As a second
example of a strategy, consider Figure 3.1(b). In this strategy, we stop as soon as we get four YESs or

four NOs. �us, the total number of questions will vary between 4 and 7.

�e strategies of Figure 3.1(a) and 3.1(b) are deterministic, i.e., the output is the same for the same
sequence of answers. In Section 3.4 we discuss a generalization of deterministic strategies, called

probabilistic strategies where the decision at each grid point is probabilistic. For instance, at a par-
ticular grid point we may determine Pass with probability 0.3 and Fail with probability 0.1, and may

continue asking questions with probability 0.6. �us we represent each grid point by a triple like

F(x , y) = (0.3, 0.1, 0.6). For deterministic strategies, the only triple values allowed are (0, 0, 1)
(green point), (1, 0, 0) (blue point) or (0, 1, 0) (red point).
Our strategies are de�ned to be naturally uniform, i.e., the same strategy is applied to each item

in the dataset, and complete, i.e., the strategy tells us what to do at each reachable point in the grid.
In addition, we want our strategies to be terminating, i.e., the strategy always terminates in a �nite
number of steps, nomatter what sequence of YES/NO answers are received to the questions (a termi-

nating strategy e�ectively corresponds to a closed shape around the origin). Note that the strategies

in Figures 3.1(a) and 3.1(b) are terminating. We will enforce a termination constraint in our problem

formulations in Section 3.2.3. Lastly, we want our strategies to be fully determined in advance, so that
we can plan beforehand how we would like to expend cost across all items, and so that we do not

need to do any computation on the �y while the answers are received. �us, we present algorithms

that compute entire strategies in advance. However, our algorithms may also be used to compute

strategies on-the-�y: �e strategy may be computed while the answer to the �rst question for all the

items is being requested from the crowd. Subsequently, the computed strategy can then be applied

on all the items for the next batch of questions.

Strategies are therefore instances of the well-studied Markov Decision Processes (MDPs) [175].

MDPs are represented by a set of states (here, all possible S), possible decisions for each state (here,
Pass, Fail, Cont), and a probability distribution over next states when a given decision is taken at a
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given state (here, whenCont is the decision taken at state S, then the next state can be one of at most 2
states—corresponding to a YES/NO answer from one of the r workers; whenPass/Fail is the decision
taken, then the strategy terminates). MDPs have a single reward function (or metric) associated with

each state. In our case, since we are consideringmultiplemetrics— cost and accuracy— the standard

value and policy iteration techniques used for MDPs do not apply. To enable our chapter to be self-

contained, we describe our approach without using the MDP formalism.

3.2.2 Metrics

To determine which strategy is best, we study two types of metrics, involving error and cost. We start

by de�ning two quantities, given a strategy:

● p1(x , y) is the probability that the strategy reaches point (x , y) and the item satis�es the �lter
(V = 1); and

● p0(x , y) is the probability that the strategy reaches point (x , y) and the item does not satisfy
the �lter (V = 0).

Below we give a simple example to illustrate these quantities, and in Section 3.2.4 we show how to

compute them in general.

We can now de�ne the following metrics:

● E(x , y) (only of interest whenF(x , y) ≠ Cont) is the probability of error given that the strategy

terminated at (x , y). If F(x , y) = Pass, then an error is made if V = 0, so E(x , y) is p0(x , y)
divided by the probability that the strategy reached (x , y) (i.e., divided by p0(x , y)+ p1(x , y)).
�e Fail case is analogous, so we get:

E(x , y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p0(x ,y)
[p0(x ,y)+p1(x ,y)] if F(x , y) = Pass

p1(x ,y)
[p0(x ,y)+p1(x ,y)] if F(x , y) = Fail

0 else

(3.1)

● E is the expected error across all termination points. �at is:

E = ∑
(x ,y)

E(x , y) × [p0(x , y) + p1(x , y)]. (3.2)

● C(x , y) (only of interest when F(x , y) ≠ Cont) is the number of questions used to reach a

decision at (x , y), i.e., simply x + y. We consider C(x , y) to be zero at all non-termination
points.
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● C is the expected cost across all termination points, i.e.,:

C = ∑
(x ,y)

C(x , y) × [p0(x , y) + p1(x , y)] (3.3)

To evaluate our n items using the same strategy, we will incur an expected cost of nC.
Notice that we are not explicitly considering latency as part of our metrics. We will consider incor-

porating latency constraints in Chapter 4.

To illustrate the metrics above, consider the simple deterministic strategy in Figure 3.2, and as-

sume that s = 0.5, e1 = 0.1, e0 = 0.2. At each termination point (x , y) we show E(x , y). For example,
E(0, 2) = 0.05. �is number can be interpreted as follows: In 5% of the cases where we end up ter-
minating at (0, 2), an error will be made. In the remaining 95% of the cases a correct (Pass) decision
will be made. To compute E(0, 2), we need the p0 and p1 values. Since there is only a single way
to get to (0, 2) (two consecutive YESs) the computation is simple: p0(0, 2) is (1 − s) (V must be
0) times e0 (i.e., 0.02) squared (thus, p0(0, 2) = (1 − s) × e20). Similarly, p1(0, 2) = s × (1 − e1)2 =
0.5 × 0.9 × 0.9 = 0.405. �us, E(0, 2) = 0.02/[0.02 + 0.405] = 0.05. When there are multiple ways
to get to a point (e.g., for (1, 1)) the p0, p1 computation is more complex, and will be discussed in
Section 3.2.4.

�e expected error E for this sample strategy is the error across all termination points. In this
case, it turns out that E = 0.115. Notice the di�erence between the overall error E and the individual
termination point errors: �e error at (1, 1) is quite high, but because it is not very likely that we end
up at (1, 1), that error does not contribute as much to the overall E.

p0(x , y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p0(x − 1, y)(1 − e0) + p0(x , y − 1)e0 if F(x , y − 1) = Cont ∧F(x − 1, y) = Cont
p0(x , y − 1)e0 if F(x , y − 1) = Cont ∧F(x − 1, y) ≠ Cont
p0(x − 1, y)(1 − e0) if F(x , y − 1) ≠ Cont ∧F(x − 1, y) = Cont
0 if F(x , y − 1) ≠ Cont ∧F(x − 1, y) ≠ Cont

p1(x , y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p1(x , y − 1)(1 − e1) + p1(x − 1, y)e1 if F(x , y − 1) = Cont ∧F(x − 1, y) = Cont
p1(x , y − 1)(1 − e1) if F(x , y − 1) = Cont ∧F(x − 1, y) ≠ Cont
p1(x − 1, y)e1 if F(x , y − 1) ≠ Cont ∧F(x − 1, y) = Cont
0 if F(x , y − 1) ≠ Cont ∧F(x − 1, y) ≠ Cont

Figure 3.3: Recursive Equations for p0 and p1 (We de�ne F(a, b) = Pass when a < 0 or b < 0.)
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3.2.3 �e Problems

Given input parameters selectivity s, false positive rate e1, and false negative rate e0, the search for a
“good” or “optimal” strategy F can be formulated in a variety of ways. Since we want to ensure that
the strategy terminates, we enforce a threshold m on the maximum number of questions we can ask
for any item (which is nothing but a maximum budget for any item that we want to �lter).

We start with the problem we will focus on in this chapter:

Problem 3.2.1 (Core) Given an error threshold τ and a budget threshold per item m, �nd a strategyF
that minimizes C under the constraint E < τ and ∀(x , y) C(x , y) < m.

An alternative would be to constrain the error at each termination point:

Problem 3.2.2 (Core: Per-Item Error) Given an error threshold τ and a budget threshold per item m,
�nd a strategy F that minimizes C under the constraint ∀(x , y) E(x , y) < τ and C(x , y) < m.

In Problem 3.2.2 we ensure that the error is never above threshold, even in very unlikely execu-

tions. �is formulation may be preferred when errors are disastrous, e.g., if our �lter is checking for

patients with some disease, or for defective automobiles. However, in other cases we may be will-

ing to tolerate uncertainty in some individual decisions (i.e., high E(x , y) at some points), in order
to reduce costs, as long as the overall error E is acceptable. For instance, say we are �ltering pho-
tographs that will be used by an internet shopping site. In some unlikely case, we may get 10 YES

and 10 NO votes, which may mean we are not sure if the photo satis�es the �lter. In this case we may

prefer to stop asking questions to contain costs and make a decision, even though the error rate at

this point will be high no matter what we decide. In Section 3.7 we study the price one pays (number

of questions) for adopting the more conservative approach of Problem 3.2.2 under the same error

threshold.

Instead ofminimizing the overall cost, one couldminimize themaximum cost at any given point.
In this case, the strategy will issue a �xed number of questions per item (corresponding to the max-

imum cost), and hence the �nal outcome can be computed only a�er all answers are received. �is

allows for a more compact representation of the strategy, as it is not necessary to keep track of the

number of YES and NO answers obtained in between. In addition, the optimal strategy can be com-

puted quickly, and hence the next two formulations are preferable when time and compactness of

representation are more important than cost.

Problem 3.2.3 (Maximum Cost) Given an error threshold τ, �nd a strategy F that minimizes the
maximum value of C(x , y) (over all points), under the constraint E < τ.
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Another variation is to minimize error, given some constraint on the number of questions. We

specify two such variants next. In the �rst variant we have a maximum budget for each item we want

to �lter, while in the second variant we have an additional constraint on the expected overall cost.

Problem 3.2.4 (Error) Given a budget threshold per item m, �nd a strategyF that minimizes E under
the constraint ∀(x , y) C(x , y) < m.

Problem 3.2.5 (Error - II) Given a budget threshold per item m and a cost threshold α, �nd a strategy
F that minimizes E under the constraints ∀(x , y) C(x , y) < m and C < α.

3.2.4 Computing Probabilities at Grid Points

In this subsection we show how to compute the p0 and p1 values de�ned in the previous subsection.
We focus on a deterministic strategy (probabilistic strategies are discussed in Section 3.4).

We compute the p values recursively, starting at the origin. To start with, note that p0(0, 0) is
(1 − s) and p1(0, 0) is s. (For instance, p0(0, 0) is the probability that the item does not satisfy the
�lter and the strategy visits the point (0, 0)—which it has to.) We can then derive the probability p0
and p1 for every other point in the grid as shown in Figure 3.3. (Recall that F(x , y) ≠ Cont means

that (x , y) is a termination point, either Pass or Fail.)
To see how these equations work, let us consider the �rst case for p0, where neither (x − 1, y) nor

(x , y− 1) are termination points. Note that we can get to (x , y) in two ways, either from (x , y− 1) on
getting an extra YES, or from (x − 1, y) on getting an extra NO. �us, the probability of an item not
satisfying the �lter and getting to (x , y) is the sum of two quantities: (a) the probability of the item
not satisfying the �lter and getting to (x , y − 1) and getting an extra YES, and (b) the probability of
the item not satisfying the �lter and getting to (x − 1, y) and getting an extra NO.�e probability of
getting an extra YES given that the item does not satisfy the �lter is precisely e0, and the probability
of getting a NO is (1 − e0). We can write similar equations for p1, as shown in the �gure.
Given values for p0 and p1, we can use the de�nitions of Section 3.2.1 to compute the errors and

costs at each point, and the overall error and cost. Note that we do not have to compute the p values
at all points, but only for the reachable points, as all other points have zero error E(x , y) and cost
C(x , y).

3.3 Deterministic Strategies

�is section develops algorithms that �nd e�ective deterministic strategies for Problem 3.2.1.
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3.3.1 �e Paths Principle

Given a deterministic strategy, using Equations 3.1, 3.2, 3.3 and Figure 3.3 given earlier, it is easy to

see that the following theorem holds:

�eorem 3.3.1 (Computation of Cost and Error) �e expected cost and error of a strategy can be
computed in time linear in the number of reachable grid points.

Based on the above theorem, we have a brute force algorithm to �nd the best deterministic strategy,

namely by examining strategies corresponding to all possible assignments of Pass, Fail or Continue

(i.e., continue asking questions) to each point in (0, 0) to (m,m). (�ere are 3m2 such assignments.)
Evaluating cost and error for each strategy takes timeO(m2) using the recursive equations. We select
the one that satis�es the error threshold, and minimizes cost. We call this algorithm naive3.

Note that some of these strategies are not terminating. However, termination can also be checked

easily for each strategy considered in time proportional to the number of reachable grid points in the

strategy. (If the p0 and p1 values at all points on the line x + y = m′, for some m′ ≤ m is zero, then
the strategy is terminating.)

�eorem 3.3.2 (Best Strategy: Naive3) �e naive3 algorithm �nds the best strategy for Problem 3.2.1
in O(m23m2).

We are able to reduce signi�cantly the search space of the naive algorithm by excluding the prov-

ably suboptimal strategies. Our exclusion criterion is based on the following fundamental theorem.

�eorem 3.3.3 (Paths Principle) Given s, e1, e0, for every point (x , y), the function

g(x , y) = p0(x , y)
p0(x , y) + p1(x , y)

is a function of (x , y), independent of the particular (deterministic or probabilistic) strategy.

Proof 3.3.4 Consider a single sequence of x NO answers and y YES answers. �e probability that an
item satis�es the �lter, and gets the particular sequence of x NO answers and y YES answers is precisely
a = s × ex1 × (1 − e1)y, while the probability that an item does not satisfy the �lter and gets the same
sequence is b = (1−s)×e y0×(1−e0)x . �e choice of strategy may change the number of such paths to the
point (x , y), however the fraction of p0 to p0 + p1 is still b/(a + b). (Note that each path precisely adds
a to p1 and b to p0. �us, if there are r paths, p0/(p0 + p1) = (r × b)/[r × (a + b)] = b/(a + b).) �e
proof also generalizes to probabilistic strategies. (In that case, r can be a fractional number of paths.)
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Intuitively, this theorem holds because the strategy only changes the number of paths leading to a

point, but the characteristics of the point stay the same.

Using the previous theorem, we have the result that in order to reduce the error, for every ter-

mination point (x , y), Passing or Failing is independent of strategy, but is based simply on g(x , y).

�eorem 3.3.5 (Filtering Independent of Strategy) For every optimal strategyF , for every point (x , y),
if F(x , y) ≠ Cont holds, then:

● If g(x , y) > 1/2, then F(x , y) = Fail

● If g(x , y) < 1/2, then F(x , y) = Pass

Proof 3.3.6 Given a strategy, let there be a point (x , y) for which F(x , y) = Pass, but g(x , y) > 1/2.
Let the error be:

E = E0 + E(x , y)(p0(x , y) + p1(x , y))

(We split the error into two parts, one dependent on other terminating points, and one just dependent
on (x , y).) Currently, since F(x , y) is Pass, E(x , y) is p0(x , y)/(p0(x , y) + p1(x , y)). �us, E =
E0 + p0(x , y). If we change (x , y) to Fail, we get a new strategy F ′, with E′ = E0 + p1(x , y), then
E′ < E. �us, by �ipping (x , y) to Fail, we can only reduce the error. Similarly, if g(x , y) < 1/2 and
F(x , y) = Fail holds, we can only reduce the error by �ipping it to Pass.

�us, we only need to consider 2m
2

strategies, namely those where for each point, we can either set it

to be a continue point or a termination point, and if it is a termination point, then using the previous

theorem, we can infer whether it should be Pass or Fail. �e algorithm that considers all such 2m
2

strategies is called naive2. �us, we have the following theorem:

�eorem 3.3.7 (Best Strategy: Naive2) �e naive2 algorithm �nds the best strategy for Problem 3.2.1
in O(m22m2).

3.3.2 Shapes and Ladders

In practice, considering all 2m
2

strategies is computationally feasible only for very small m. In this
section, we design algorithms that only consider a subset of these 2m

2

strategies and thereby can

only provide an approximate solution to the problem (i.e., the expected cost may be slightly greater

than the expected cost of the optimal solution). �e subset of strategies that we are interested in are
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Figure 3.4: A Shape

Figure 3.5: (a) Triangular Strategy Corresponds to a Shape (b) Ladder Shape Pruning

those that correspond to shapes.We will describe an e�cient way of obtaining the best strategy that
corresponds to a shape.

Shapes: A shape is de�ned by a connected sequence of (horizontal or vertical) segments on the grid,
beginning at a point on the y-axis, and ending at a point on the x axis, along with a special point
somewhere along the sequence of segments, called a decision point. We also assume that each segment
intersects at most with two other lines, namely the ones preceding and following it in the sequence.
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As an example, consider the shape in Figure 3.4 (ignore the dashed lines for now) �is shape begins

at (0, 4), has a sequence of 14 segments, and ends at (4, 0). �e decision point (not shown in the

�gure) is (for example) at (5, 5). As seen in the �gure, the segments are allowed to go in any direction

(up/down or le�/right).

Each shape corresponds to precisely one strategy, namely the one de�ned as follows:

● For each point in the sequence of segments starting at the point on the y axis, until and in-
cluding the decision point, we color the point blue (i.e., we designate the point as Pass). In the

�gure, all points in the sequence of segments starting from (0, 4) until and including (5, 5) are

colored blue.

● For each point in the sequence of segments starting at the point a�er the decision point, until
and including the point on the x axis, we color the point red (i.e., we designate the point as
Fail). In the �gure, all points a�er (5, 5) on the sequence of segments are colored red.

● For all the points inside or on the shape that are reachable, we color them green; else we color
them white. (Some points colored blue or red previously may actually be unreachable and will

be colored white in this step.) In the �gure, some of the blue points, such as (2, 5), (1, 5), (1, 6),

. . ., (5, 5), and some of the red points (5, 4), . . ., (4, 3), and (4, 1) are colored white, while some

of the unreachable points inside the shape, such as (3, 4) and (4, 4) are colored white as well.

�e reachable points inside the shape, like (1, 1) or (2, 3) are colored green.

�e strategies that correspond to shapes form a large and diverse class of strategies. In particular,

the triangular strategy and rectangular strategy both correspond to shapes. Consider Figure 3.5(a),

which depicts a shape corresponding to the triangular strategy of Figure 3.1(a). (Again, ignore dashed

lines in the �gure.) �e shape consists of eight connected segments, beginning at (0, 4) and ending at

(4, 0), each alternately going one unit to the right or down. �e decision point in this case is the point

(3, 2). Note that all points in the segments leading up to (3, 2) are either blue or white (unreachable),

while all points in the segments a�er (3, 2) are red or white. In this case, all the points on the interior

of the shape are continue points.

�e rectangular strategy of Figure 3.1(b) corresponds to the shape formed by two segments, one

from (0, 4) to (4, 4) and one from (4, 4) to (4, 0). �e point (4, 4) is the decision point. As another

example, consider Figure 3.5(b). If we consider the shape corresponding to the solid lines, we have

a segment from (0, 2) to (0, 5), another from (0, 5) to (2, 5), and so on until (6, 6) — which is the

decision point. �en we have �ve segments from (6, 6) to (0, 6). Once again, notice that some of the

points before the decision point in the sequence of segments, such as (3, 4) and (2, 5) are unreachable,

and some points a�er the decision point, like (6, 1) and (6, 2) are unreachable. �e decision point is
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unreachable as well. In this case, all internal points are reachable (and thus colored green).

As an example of a strategy that does not correspond to a shape, if the strategy in Figure 3.5(b)

had an additional terminating point, say Fail at point (1, 1), then it can never correspond to a shape.

Why shapes? One objection one may have to studying shapes is that the best strategy corresponding

to shapes may be much worse than the best strategy overall.

However, the properties that shapes obey make intuitive sense. First, note that the strategies

that correspond to shapes only have terminating points on the “boundary” of the strategy, and not

on the interior. �is makes sense because it is not worthwhile to have a termination point inside

the boundary of termination points, since we might as well move the boundary earlier. Second, the

strategies have a single decision point; this makes sense because it is not useful to alternate between

red and blue points on the boundary, since the more YES answers we get relative to NO answers,

the more likely the item should satisfy the �lter, hence we should be able to improve the strategy by

converting it to one with a single point where the colors change.

In addition, we found that over 100 iterations of the naive2 algorithm for random instances of

the parameters s, e1, e0 and m, by inspection all of the optimal strategies corresponded to shapes. In
addition, as we will see in the experiments, on varying parameters, the best strategy given by naive2

is no better than the best strategy corresponding to a shape.

Hence, we pose the following conjecture:

Conjecture 3.3.8 Given a problem, the best deterministic strategy is one that corresponds to a shape.

Proving this conjecture remains open.

Ladder Shapes: From all strategies that correspond to shapes, if we wanted to �nd the best strategy,

we can prove that we only need consider the subset of shapes that we call ladder shapes. A ladder
shape is formed out of two ladders connected at the decision point. We �rst de�ne a ladder to be
a connected sequence of (�at or vertical) segments connecting grid points, such that the �at lines

go “right”, i.e., from a smaller x value to a larger x value, and the vertical lines go “up”, i.e., from a
smaller y value to a larger y value. As an example, in Figure 3.5(b), the sequence of (dashed and
solid) segments (0, 2)-(0, 3)-(3, 3)-(3, 6)-(6, 6) forms a ladder, while the sequence of segments (0,

2)-(0, 5)-(2, 5)-(2, 3)-(3, 3)-(3, 6)-(6, 6) is not a ladder because (2, 5) to (2, 3) goes from a larger y
value to a smaller y value. As another example, the sequence of solid segments from (0, 4) to (4, 0)
in Figure 3.5(a) is not a ladder because the vertical segments go from a larger y value to a smaller y
value, while the segment (0-2)-(3,2) is a ladder.

Wede�ne the set of ladder shapes to be those shapes that contain a decision point and two ladders,
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i.e., the connected sequence of segments from the point on the y axis to the decision point forms one
ladder and the connected sequence of segments from the point on the x axis to the decision point
forms the second ladder. �us, ladder shapes are a subset of the set of all shapes. Intuitively, ladder

shapes are the shapes that we would expect to be optimal: the shape is smaller at the sides (close to

the x and y axis, where we are more certain whether the item satis�es the �lter or not), and larger
close to the center (away from both the x and y axis, where we are more uncertain about the item).
As before, the strategy that corresponds to a ladder shape is the one formed by coloring all the

points in the “upper” ladder blue, and all the points in the “lower” ladder red, then coloring all re-

maining reachable points inside the shape green, and coloring all unreachable points inside or on the

boundary of the shape white. In the following, we provide a few examples of how we can convert any

shape into a ladder shape such that the strategy corresponding to the ladder shape has the same or

lower cost than the strategy corresponding to the shape. Since the set of ladder shapes is a subset of

all possible shapes, if we want to �nd the best strategy corresponding to a shape, we can thus focus

on ladder shapes instead of all shapes. �us, we have the following theorems:

�eorem 3.3.9 (Transformation) Any shape can be converted into a ladder shape yielding lesser cost
and the same error.

We now describe some examples of how the conversion algorithm works. �e algorithm along with

an informal proof can be found next. �e algorithm essentially prunes redundant portions of the

shape to give a ladder shape.

�eorem 3.3.10 (Best Shape) For problem 3.2.1, the best strategy from the set of shapes has equal cost
to the best strategy from the set of ladder shapes.

�e above theorem gives us an algorithm, denoted ladder, which considers a small subset of the set

of all shapes, namely all the ladder shapes. Note that this algorithm is still worst-case exponential;

however, as we will see in the experiments, this algorithm performs reasonably well in practice, and

in particular, much better than naive2.

Examples of Converting Shapes to Ladder Shapes: First, consider the triangular strategy shown in

Figure 3.5(a). As it stands, the shape (formed from the solid lines in the �gure) is not a ladder shape,

since the sequence of segments leading to the decision point (3, 2) from the point on the x axis as
well as the point on the y axis don’t form ladders. While the ladder from the y axis has segments that
go “down” instead of “up”, the ladder from the x axis has segments that go “le�” instead of “right”.
In the strategy corresponding to the shape, note that asking questions at points above the line y = 2
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is redundant, because once we cross y = 2 (i.e., 2 YES answers), we will always reach a Pass point.
Similarly, notice that asking questions at points on the right of the line x = 3 is redundant. �us,
we can convert this triangular strategy into a rectangular strategy with the same error and lower cost

simply by pruning the regions to the top and to the right of the decision point, and having termination

points earlier. Notice that this corresponds to the ladder shape formed by the two dashed ladders

(one from (0, 2) to (3, 2) and one from (3, 0) to (3, 2), with the decision point (3, 2)). �us, the shape

(giving the triangular strategy) can be converted into a ladder shape (giving a rectangular strategy)

with lower cost and the same error.

As another example, consider Figure 3.5(b). Here the solid blue line represents a shape corre-

sponding to the strategy formed by the blue, green and red dots. �e shape has 10 lines: (0, 2)-(0,

5)-(2, 5)-(2, 3)-(3, 3)-(3, 6)-(6, 6) (which is also the decision point), (6, 6)-(6, 2) and so on. Now con-

sider the shape corresponding to the dashed blue line in the �gure. (�is shape is the same as the

solid shape, except for the portion (0, 3) to (3, 3) which bypasses the segment portions (0, 3)-(0, 5)-(2,

5)-(2, 3)-(3, 3), and the portion (5, 0) to (5, 1) which bypasses the portions (6, 0)-(6, 1)-(5, 1)). Notice

that this shape corresponds to a ladder shape (with one ladder beginning at (0, 2) and ending at (6,

6), and another beginning at (5, 0) and ending at (6, 6), with a decision point at (6, 6)). �is ladder

shape corresponds to the strategy where there is a blue point at (1, 3) and a red point at (5, 0). Notice

that for the strategy that corresponds to the shape, asking questions at (1, 3) and (1, 4) is redundant

because the item will “Pass” no matter what answers we get at (1, 3) and (1, 4). �us, moving the

segment portion down to (1, 3) and to (5, 0) gives us a ladder shape that corresponds to a strategy

that asks fewer questions to obtain the same result.

As yet another example, consider Figure 3.4, here, the shape corresponding to the solid lines in

the �gure (with decision point (5, 5)), can be replaced by the ladder shape corresponding to the two

ladders (0, 4)-(3, 4) and (3, 0)-(3, 4), with decision point (3, 4).

�us, we have shown some examples of how to convert shapes into ladder shapes such that the

strategy corresponding to the ladder shape has lower cost than the strategy corresponding to the

shape.

ConversionAlgorithm:Wenowpresent our algorithm to convert shapes into ladder shapes. Readers

may skip the rest of the material in this section without loss of continuity.

Our algorithm proceeds in two steps: First, we prune unreachable regions. Second, we prune

redundant regions.

Step 1: Pruning Unreachable Regions: We de�ne y-path to be the sequence of lines leading to the
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decision point from the point on the y axis in the shape (and including the decision point), and x-
path to be the sequence of lines leading to the decision point from the point on the x axis in the shape
(and including the decision point). We begin by pruning some of the the unreachable portions from

the shape. Notice that if the x-path ever goes “down”, we can instead add a segment that goes “right”
until we once again intersect the shape. Additionally, if the y-path ever goes “le�” we can instead add
a segment that goes upwards until we once again intersect the shape. (�e decision pointmay need to

bemoved if it is unreachable.) A�er this procedure, wemay assume that the x-path now has segments
that go right, upwards or to the le�, while the y-path now has segments that go right, upwards and
downwards. (Essentially all that we are saying is that for every shape with these unreachable portions,

there is another shape without it, with same cost.) �is also means that for a given y value there is a
single point on the x-path, and for a given x value, there is a single point on the y-path.

Step 2: Pruning Redundant Regions:We now convert both x-path and y-path into ladders. We de-
scribe our algorithm for the x-path, the algorithm for the y-path follows similarly. (As we describe the
algorithm, we also provide an informal explanation as to why it works.) �e algorithm is essentially

a scan along the x axis that incrementally builds the ladder.
We begin at x = 0, and scan the points corresponding to the x-path for the given x coordinate. For

some x = xi , wemay �nd that there are some points along the x-path that have the x coordinate set to
xi . Find one such pointwhich has the largest such y (say yi). Now, we add the portion (xi , 0)−(xi , yi)
to the ladder. We can do this because no matter what answers we get to the questions to the right

of (xi , 0), with a y coordinate less than yi , we will always end at a Fail terminating point. Now, we
ignore the x-path portion below y = yi . (We can e�ectively assume that wemoved the x axis to y = yi
(and the origin to (xi , yi)). We now repeat the same procedure. Let us say the next x coordinate for
which we �nd an x-path point is x = x j. We add (xi , yi) − (x j , yi) to the ladder. Let the point on
x-pathwith the largest y value at x j be y j. We then add (x j , yi)−(x j , y j) to the ladder. Subsequently,
we ignore all x-path points below y j.
In other words, for each x value, we always add a segment that connects the ladder to the ladder

until x − 1, and optionally a segment that goes from a smaller y value to a larger y value. We keep
building the ladder until we hit the decision point. Note that the decision point is the point on the

x-path with the largest y coordinate, thus we will always hit it. In this manner, we maintain the
invariant that all points to the right of the ladder being constructed are all points on x-path, and not
on y-path. (Note that there cannot be any points on the y-path to the right of this ladder apart from
the decision point because otherwise we will violate the property that the shape has no unreachable

regions.) �us, we ensure that if we ever reach a point on the lower ladder, we are sure to end at a
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x-path point and not an y-path point.
Similarly, we build the upper ladder corresponding to the y-path. Here the invariant being main-

tained is that all points above this ladder must be y-path points. �e decision point is then the point
on the y-path that has the largest x coordinate. �e two ladders meet at the decision point.

3.4 Probabilistic Strategies

In this section, we consider probabilistic strategies. Recall that a probabilistic strategy is again repre-

sented in a grid, however, each point has a tripleF(x , y) = (apass , a f ail , acont) corresponding to the
probability of returning Pass (blue), Fail (red), or Continue asking questions (green); as a shorthand,

we let apass(x , y) denote the value of apass in F(x , y).
We can pose Problem 3.2.1 as a set of constraints, where the objective is to minimize the expected

cost C, given a constraint that E < τ, along with some additional constraints, which are essentially
the counterparts of the equations described in Section 3.2.

● We have the probabilistic counterpart of Equation 3.1:

∀(x , y); x + y ≤ m ∶
E(x , y) = apass(x , y) × g(x , y) + a f ail(x , y) × (1 − g(x , y))

(3.4)

(Recall that g(x , y) is de�ned in �eorem 3.3.3.) �e error at a certain point is simply the
probability that the strategy terminates at that point with a Pass, times the probability of error

if it was a Pass, plus a similar quantity if the strategy terminated with a Fail. Note that g(x , y)
is a constant, independent of the strategy.

● �e cost at a given point is simply the probability that the strategy terminates at that point

times the total number of questions asked to get to the point.

∀(x , y); x + y ≤ m ∶ C(x , y) = (apass(x , y) + a f ail(x , y)) × (x + y) (3.5)

● �e error and cost equations stay the same as Equations 3.2–3.3.

E = ∑
(x ,y);x+y≤m

E(x , y) × [p0(x , y) + p1(x , y)] (3.6)

C = ∑
(x ,y);x+y≤m

C(x , y) × [p0(x , y) + p1(x , y)] (3.7)
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● �e counterpart of the equations in Figure 3.3 is simpler since we ask an additional question at

(x , y − 1) with probability c(x , y − 1) and at (x − 1, y) with probability c(x − 1, y).

∀(x , y); x + y ≤ m ∶ p0(x , y) =
e0 ⋅ p0(x , y − 1) ⋅ acont(x , y − 1)+
(1 − e0) p0(x − 1, y) ⋅ acont(x − 1, y)

(3.8)

∀(x , y); x + y ≤ m ∶ p1(x , y) =
e1 ⋅ p1(x − 1, y) ⋅ acont(x − 1, y)+
(1 − e1) p1(x , y − 1) ⋅ acont(x , y − 1)

(3.9)

● In addition, we have the following constraints:

∀(x , y); x + y = m ∶ acont(x , y) = 0 (3.10)

�e constraint above forces the strategy to terminate at m questions.

∀(x , y); x + y ≤ m ∶ apass(x , y) + a f ail(x , y) + acont(x , y) = 1 (3.11)

�is constraint simply forces the probabilities of termination and continuation at each point

on the grid to add up to one.

�is program is not linear, due to constraints 3.6, 3.7, 3.8 and 3.9 (all of which involve a product of

two variables). A key technical result of our work is that we can reason about “paths” using a variant

of the Paths Principle (�eorem 3.3.3) to transform the program into a linear program.

Transformed Program: We introduce a new pair of variables pathpass , path f ail and pathcont to
replace p0, p1, apath , a f ail , acont for every point in the grid. �e variable pathpass corresponds to the
(fractional) number of paths in the strategy from (0, 0) to (x , y) that are stopped andPass is returned
for those paths, path f ail corresponds to the (fractional) number of paths that are stopped at (x , y)
and Fail is returned for those paths, while pathcont(x , y) corresponds to the (fractional) number of
paths that continue onwards beyond (x , y). �us, pathpass(x , y) + path f ail(x , y) + pathcont(x , y)
represents the number of paths reaching (x , y). For instance pathcont(x , y) = 0 implies that all paths
reaching (x , y) terminate at (x , y).
We let the constant const1(x , y) = s× ex1 ×(1− e1)y (i.e., the probability that the item satis�es the

�lter, and we get a given sequence of x no answers and y yes answers), and constant const0(x , y) =
(1− s) × e y0 × (1− e0)x (i.e., the probability that the item does not satisfy the �lter, and we get a given
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sequence of x no answers and y yes answers). Note that the constant g(x , y) can be expressed as:

g(x , y) = const0(x , y)
(const0(x , y) + const1(x , y))

�e following relationships are immediate:

p0(x , y) = const0(x , y) × (pathpass(x , y) + path f ail(x , y) + pathcont(x , y))

p1(x , y) = const1(x , y) × (pathpass(x , y) + path f ail(x , y) + pathcont(x , y))

�ese relationships hold because the probability of getting to a point when the item satis�es the �lter

(or not) is simply the total number of paths times the probability of a single path when the item

satis�es the �lter (or not).

Additionally, since the probability apass is simply the fraction of paths that stop at (x , y) with a
Pass, we have:

apass(x , y) =
pathpass(x , y)

pathpass(x , y) + path f ail(x , y) + pathcont(x , y)

We have similar equations for Fail and Cont. �e constraints may now be rewritten in terms of the

path variables:

● Constraints 3.4, 3.5, 3.6 and 3.7 transform into:

E = ∑
(x ,y);x+y≤m

pathpass(x , y) × const0(x , y) + path f ail(x , y) × const1(x , y)

C = ∑
(x ,y);x+y≤m

(pathpass(x , y) + path f ail(x , y)) ⋅ (x + y) ⋅ (const0(x , y) + const1(x , y))

(Recall that const0, const1 are constants, so the constraints are linear.) In other words, E is
precisely the number of paths leading to the point that terminate at that point, times the smaller

of the two error probabilities. �e cost C is simply the cost for all paths terminating at (x , y)
(each such path has probability const0 + const1).

● Constraints 3.8 and 3.9 transform into:

∀(x , y); x + y ≤ m ∶ pathpass(x , y) + path f ail(x , y) + pathcont(x , y) =
pathcont(x , y − 1) + pathcont(x − 1, y)
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In other words, the number of paths into (x , y) are precisely those that come from (x , y − 1)
and (x − 1, y)

● We replace constraint 3.10 with the following, which implies that no paths go beyond x+y = m.

∀(x , y); x + y = m ∶ pathcont(x , y) = 0

● Wealso have the constraint that there is a single path to (0, 0), i.e., pathpass(0, 0)+path f ail(0, 0)+
pathcont(0, 0) = 1

No additional constraints exist.

�e linear program (LP) has a total of O(m2) variables, with the total size of the LP encod-
ing being O(pol y(m)). As a result, the complexity of the solution is O(m23.5 ⋅ log(pol y(m)), i.e.,
O(m7 logm)

�eorem 3.4.1 (Best Probabilistic Strategy) �e best probabilistic strategy for Problem 3.2.1 can be
found in O(m7 logm).

We denote the algorithm corresponding to the linear program above as linear.

3.5 Other Formulations

3.5.1 Problem 3.2.2

For Problem 3.2.2, we can show that we simply need to compute g(x , y) for every point in (0, 0) to
(m,m), bottom up, and for every point where we �nd that min(g(x , y), 1 − g(x , y)) < τ, we make
the point a terminating point, returning Pass if g(x , y) ≤ 0.5 and Fail otherwise.
In fact, we can actually terminate earlier if we �nd that p0 and p1 are 0 for all points (x , y) ∶

x + y = m′ at some m′ < m. In this case, we do not need to proceed beyond points along x + y = m′.

Note that a feasible strategy that terminates and satis�es E(x , y) < τ for every terminating point
may not exist.

�us, we have the following theorem:

�eorem 3.5.1 �e best strategy for Problem 3.2.2 can be found in O(m2).

3.5.2 Problems 3.2.3 and 3.2.4

We begin by considering Problem 3.2.4 �rst. �is problem formulation is identical to Maximum A-

Posteriori (MAP) estimation. In this case we simply ask all m questions (since there is no gain to
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asking fewer than m questions). We can estimate the p0 and p1 at all points along x + y = m for this
triangular strategy. If p0 > p1, we return Fail at that point and Pass otherwise. We can then estimate
the error E over all the terminating points.

�us, we have the following theorem:

�eorem 3.5.2 �e best strategy for Problem 3.2.4 can be found in O(m2).

(We can actually compute the best strategy in O(m) if binomial expressions involving m can be
computed in O(1) time.)
Subsequently, we can solve Problem 3.2.3 by performing repeated doubling of the maximum cost

m, until we �nd a triangular shape for which E < τ, followed by binary search between the two
thresholds m and m/2. �us, we have the following theorem:

�eorem 3.5.3 �e best strategy for Problem 3.2.4 can be found in O(m2 logm).

(We can actually compute the best strategy in O(m logm) if binomial expressions involving m can
be computed in O(1) time.)

3.5.3 Problem 3.2.5

For Problem 3.2.5, we can use the same linear programming formulation as in Section 3.2.4, except

that we constrain C and minimize E. We thus have the following:

�eorem 3.5.4 �e best probabilistic strategy for Problem 3.2.5 can be found in O(m7 logm).

3.6 Multiple Filters

Now, we consider the case when we have independent �lters f1, f2, . . . , fl , with independent selectiv-
ities s1, s2, . . . , sl , and independent error rates e10, e11, e20, e21, . . . , el0, el1, where ei0 is the probability
that a human answers YESwhen the item actually does not pass the ith �lter, and ei1 is the probability
that the human answers NO when the item actually does pass the ith �lter. Note that the multiple
�lters problem is much harder than the single �lter one, since a strategy not only must decide when

to continue asking questions, but must also now decide which question to ask next (i.e., for what �l-
ter). �e problem becomes even harder when the �lters are correlated, however, we leave it for future

work.

We can visualize the multiple �lters case as a 2l dimensional grid, where each point (x10, x11, x20,
x21, . . . , xl0, xl1) corresponds to the number of NO and YES answers received from humans for each
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of the �lters. (xi0 indicates the number of NO answers for the ith �lter, and xi1 indicates the number
of YES answers for the ith �lter.)
In itsmost general form, themultiple �lters problemallows us, at any point on this 2l-dimensional

grid, to ask a question corresponding to any of the l �lters. �us, each point can correspond to “Pass”,
“Fail”, or “Ask ith Filter”, where i can be one from 1 . . . l .
We can in fact represent the problem as a linear program, generalizing the linear program in

Section 3.4. �e counterpart of the variables pathpass , path f ail and pathcont are pathpass, path f ail

and pathcont1, . . . , pathcontl , representing respectively, the number of paths terminating at a given
point with pass or fail and the number of paths continuing in the direction of each of the l �lters.
Similarly, the total number of paths coming into a point is simply the paths coming in from each of

the l directions.

�eorem 3.6.1 �e best probabilistic strategy for the multiple �lters version of Problem 3.2.5 can be
found in O(m7l logml).

�is algorithm is exponential in the number of �lters l , which may not be very large. However, any
algorithm whose output is a strategy using our representation would need Ω(m2l), since we need to
provide a decision for each point in the 2l dimensional cube of size m2l . It remains to be seen if we
can �nd an optimal or approximately optimal strategy whose representation is smaller.

3.7 Experiments

�e goal of our experiments is to study the runtime and expected cost and errors of the strategies

output by our algorithms with respect to those output by other naive and approximate algorithms.

We continue to focus on Problem 3.2.1.

In our experiments we explored wide ranges of values for parametersm, e0, e1, τ, s. In some cases
we manually selected the values, to study scenarios that interested us or to study extreme cases in the

parameter space. In other cases, we synthetically generated random instances of the parameter values

(over given ranges), to explore the average behavior.

Algorithms:

We considered the following exact deterministic algorithms:

● naive3: �e naive algorithm that considers all 3m
2

strategies.

● naive2: �e naive algorithm that considers all 2m
2

strategies (a�er pruning strategies that vio-

late the Paths Principle).
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Figure 3.6: For �xed values of parameters: (a) Varying m (b) Varying s (c) Varying e1

We also considered the following heuristic deterministic algorithms:

● ladder: �is algorithm returns the best strategy corresponding to a ladder shape. �is algo-

rithm always returns a better deterministic strategy than the heuristic proposed in [139], as we

will see in Section 3.8.

● growth: �is greedy algorithm “grows” a strategy until the constraints are met. It begins with

the null strategy at (0, 0) (i.e., terminate and return Pass or Fail). �en, the algorithm “pushes
the boundary ahead”. In other words, in each iteration, the algorithm in turn considersmoving

each termination point (x , y) to (x + 1, y) and (x , y + 1) and computes the ratio of change in
cost to change in error. �e algorithm decides to move the termination point that yields the

smallest increase in this ratio. �is “pushing” continues until the error constraint is satis�ed.

● shrink: �is greedy algorithm “shrinks” a strategy until the cost cannot be decreased any longer.

It begins with the triangular strategy that asks allm questions, and “pushes the boundary in”. In
other words, in each iteration, the algorithm for each terminating point (x , y) in turn, consid-
ers adding a terminating point at (x , y−1) or (x−1, y) and computes the ratio of the change in
cost to change in error. �e algorithm decides to add a terminating point that yields the largest

increase in this ratio. �e “shrinking” continues as long as the error constraint is satis�ed.
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● rect: �is algorithm tries all rectangular strategies that �t in (m,m).
In addition, we have the optimal probabilistic algorithm:

● linear: �is algorithm returns the strategy computed by the linear program in Section 3.4.

Also, we compared our algorithms against the best algorithm for Problem 3.2.2.

● point: �is algorithm ensures that at every termination point, E(x , y) < τ. �us, this algo-
rithm returns the optimal strategy for Problem 3.2.2. When the algorithm cannot �nd a feasi-

ble solution for Problem 3.2.2, we modify the solution to ensure that at least the cost constraint

C(x , y) < m is satis�ed. �at is, for an infeasible solution, we add termination points along
the boundary x + y = m, if those points are reachable.

Note that theremay be parameters for which some of the algorithms return an infeasible solution

(i.e., where the error constraint is violated). It can be shown that for all algorithms except growth

and point, either all algorithms return feasible solutions or none of them do. Algorithms growth and

point, in addition to failing whenever other algorithms fail, also fail in some other cases.

Comparison of Heuristic Deterministic Algorithms:

Results on Varying m: ladder results in large cost savings compared to other heuristic deterministic
algorithms, and furthermore its cost decreases as m increases

Figure 3.6(a) presents the results of an experiment that supports this �nding. In this scenario,

the parameters are s = 0.6, e0 = 0.2, e1 = 0.25, τ = 0.05, and m (horizontal axis) is varied from 8
to 16. �e vertical axis shows the expected cost C returned by the strategy found by the heuristic
deterministic algorithms. For instance, when m is 14, the cost for ladder is about 3.85 (i.e., we need
around 3.85 questions on average to get the desired expected error), growth is about 3.9 and shrink is

about 4. �e plot for rect is not shown, but rect is a straight line at about 5.6.

Note that even these small di�erences in expected cost can result in major cost savings overall. If

there are amillion items that need to be �ltered, where each question costs 10 cents andm is 14, ladder
results in at least 0.05 ∗ 106 ∗ 0.1 = $5000 of savings over the shrink and growth, and a whopping

$100000 of savings over the rect.

While at �rst one might think that increasing the question limit m will increase the overall cost,
observe that in reality the opposite is true for ladder and rect. �e reason is that as m increases, the
number of shapes available for consideration strictly increases, giving the optimizer more choices.

�e same cannot be said of shrink and growth, since these are both heuristic greedy search algorithms

that can get stuck in local minima. For instance, the cost for shrink increases asm goes from 10 to 11,
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and once again from 14 to 15 in the experiment above. Note also that none of the algorithms give a

feasible solution when m < 8 for the set of constraints.
As mentioned earlier, space constraints prevent us from including multiple results per �nding.

�e extensive additional experiments we performed support all of our �ndings.

Results on Varying s: growth sometimes gets stuck in local minima; if not, shrink and growth

outperform rect.

Our second experiment, depicted in Figure 3.6(b), illustrates this �nding. We �xed parameters

e0 = 0.2, e1 = 0.25, τ = 0.05,m = 10, and varied s from 0.2 to 0.8 and compared the same algorithms
as before. �e expected cost is plotted as a function of s. For instance, when s is 0.5, the cost for ladder
is about 4.15, growth is about 4.28, rect (not depicted in �gure) is about 5.68 and shrink is about 4.35.

Once again, ladder performs the best. As expected, the cost increases when s is close to 0.5 since that
situation is the most uncertain (and therefore we need to ask more questions). Additionally, when

s < 0.3 or s > 0.7, growth gives an infeasible answer (i.e., it gives a strategy that does not satisfy the
constraint on error) — depicted in the graph as the cost being set to∞. Since the growth strategy
does a local search around the origin, it can get stuck in an infeasible local minimumwhere the error

can no longer be reduced by growing the strategy. �e algorithm rect is much worse than the other

algorithms with an additional expected cost of at least 1 over the other algorithms. However, it does

give a feasible solution when growth does not.

Results on Varying e1: Cost increases superlinearly as e1 increases for all algorithms.

In the third experiment, depicted in Figure 3.6(c), we �xed parameters e0 = 0.25, s = 0.7, τ =
0.1,m = 15, and varied e1 from 0.1 to 0.45 and compared the algorithms. �e expected cost is plotted
as a function of e1. Once again, ladder performs the best, while growth and shrink each perform
well in some situations. Also, the expected cost increases as e1 increases, in a superlinear fashion.
growth once again returns an infeasible answer for large e1, and there are some points where shrink
does extremely poorly compared to ladder, such as e0 = 0.25 (with a di�erence in expected cost of 1,
translating to > 33% in savings). �e experimental results on varying e0 are similar and therefore not
shown.

Comparison of ladder, point, and linear algorithms:
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Having shown that ladder is the best heuristic deterministic algorithm (at least in terms of the

quality of the results; run time performance is explored later on), the next natural question is how it

compares to our other choices.

Results on Varying m: linear performs even better than ladder, both of which perform signi�cantly
better than point, which sometimes returns infeasible solutions.

To illustrate our �nding, we repeated the same set-up of the experiment in Figure 3.6(a) — the

results are depicted in Figure 3.7(a). We �nd that point returns an infeasible solution even for the

case when m = 8 or 9, but for m = 10 onwards it returns a feasible solution. �is is probably because
point terminates too early (and has too “narrow” a strategy) whenm is small, while linear and ladder
have a “wider” shape. Interestingly, the cost of point also increases asm increases; this is because the
strategy looks identical for anym andm + 1, except that the termination points along x + y = mmay
have been moved up to x + y = m + 1.
While point is infeasible for m = 9, linear has a cost of nearly 0.1 less than ladder, representing
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signi�cant savings in overall cost. Also, the cost returned by linear only decreases as m increases
since a larger space of solutions are considered.

�e cost di�erence between point and linear is greater than what we have observed in our earlier

graphs. �is di�erence highlights the bene�ts of using an expected error bound (Problem 3.2.1) as

opposed to a point error bound (Problem 3.2.2). And as mentioned earlier, if we are �ltering one

million items, the savings are multiplicative. �us, for crowdsourcing applications where expected

error is adequate, linear (or ladder if a deterministic strategy is desired) is clearly the way to go.

Comparison of Algorithms on Average:

So far we have illustrated our �ndings with particular scenarios, i.e., particular parameter set-

tings. To further validate our �ndings, we now explore the average behavior of our algorithms on

varying parameters randomly over a range of values.

Results on Varying m: (1) �e linear and ladder algorithms continue to outperform the other algo-
rithms in our average scenario, especially for large m. (2) For smaller m, shrink does quite well.

In the �rst experiment, depicted in Figure 3.7(b), we compared the algorithms on varying m for
100 synthetic instances where s, e0, e1, τ were sampled from [0, 1], [0.1, 0.4], [0.1, 0.4], [0.005, 0.1]
respectively. (We made sure that all three algorithms were feasible for each random instance used.)

�e expected cost is then averaged over all 100 instances, and plotted as a function of m. We focus
on the best algorithms so far, ladder and linear. We also show shrink for comparison. (rect is always

muchworse, and growth and point have cases where they returns infeasible answers, and are typically

not much better than shrink when they are feasible).

We can see in Figure 3.7(b) that linear performs much better than all algorithms for all m, with
at least a di�erence of 0.1 on average. For lower m values, for these settings we do not see much of
an improvement on average between ladder and shrink, which indicates that we may be able to use

shrink for cases when m is small. However, for larger m, we �nd that the di�erence between ladder
and shrink is at least 0.1. �is is because there are more opportunities for optimization for ladder and

linear compared to shrink as m increases.
Interestingly, we �nd that the cost does not strictly decrease for linear and ladder asm increases;

this is an artifact of our experimental setup. For each m, we restrict our instances to those for which
all algorithms are feasible. �us, for smaller m we are not considering many of the “harder” cases,
which are handled by largerm, instead, we are only consider the “easier” cases, whose expected cost is
smaller. On the other hand, allowing a largermmeans that we can explore a larger space of solutions.
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�us, the variation withm is not as predictable as in the earlier case, except that it seems to gradually
increase with some small variations.

Results on Varying m: linear yields strictly better (lower cost) strategies than ladder in a substantial
majority of the scenarios. Furthermore, ladder outperforms the rest of the deterministic algorithms
in a substantial number of scenarios.

�e previous experiment indicates that, on average, we get signi�cant improvements in cost by

using linear and ladder. However, we would like to verify if this behavior is because of a few instances

where there is a high di�erence in cost (while the rest of the instances return the same cost). To see

how o�en we get strictly better strategies by using either ladder or linear, we counted the number

of instances where linear gave a strictly better strategy than ladder, and the number of cases where

ladder gave a strictly better strategy than the rest of the algorithms for the same experimental setup

described above. �e results are depicted in Figure 3.7(c).

We �nd that form = 10, linear gives a strictly better strategy than ladder in 80% of the cases (and
in the remaining 20% of the cases, gives a strategy of the same cost as ladder). On the other hand,

ladder gives a strictly better strategy than the rest of the algorithms for over 45% of the cases (and in

the remaining 55%, gives a strategy of the same cost as the best heuristic algorithm).

Further, the number of scenarios where linear outperforms ladder (and where ladder outper-

forms the others) continues to increase as m increases. For m = 15, linear gives a strictly better
strategy than ladder in 90% of the cases, while ladder gives a strictly better strategy than the rest of

the algorithms in 65% of the cases.

Results on Varying s: �e linear algorithm outperforms ladder much more when s is away from
0.5, while ladder outperforms the other algorithms more when s is close to 0.5.

In the second experiment, depicted in Figure 3.8(a), we compared the algorithms on varying s
from 0.1 to 0.9 for 100 synthetic instances where m = 14 and e0, e1, τ were sampled from [0.1, 0.4],
[0.1, 0.4], [0.005, 0.1] respectively. �e average expected cost was plotted as a function of s. In this
case, we �nd that linear on average yields a smaller cost than the other two algorithms by around 0.1,

but more so when s is away from 0.5. On the other hand, shrink on average yields a larger cost than
ladder, and more so when s is closer to 0.5. In fact, when s = 0.5 shrink asks 0.5 higher questions on
average.
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Comparison to Naive Algorithms:

Cost for Random Instances: ladder performs identically to naive2 and naive3 for each random
instance generated.

In Section 3.3.2, we informally argued that any optimal deterministic strategy should be found by

the ladder algorithm, althoughwe do not have a formal proof yet. In our next experiment we checked

for cost di�erences between strategies found by ladder and those found by naive2, an exhaustive

algorithm that does �nd the optimal deterministic strategy. (naive3 gives the same result as naive2.)

We generated 100 synthetic instances for each m from 4 to 8 (with s, τ, e1, e0 all uniformly sampled
from [0, 1], [0.1, 0.4], [0.1, 0.4], [0.005, 0.1] respectively). (Beyond 8, naive2was impractical to use.)
We found that ladder returns a strategy of the same cost as naive2 for each instance. In fact, in none

of the many other experiments we performed did we �nd an instance where ladder does not return

the optimal deterministic strategy. �is result is a strong indicator that ladder is indeed optimal,

however, the proof is still open.

Runtime Comparisons
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Runtime results on Varying m: naive3 and naive2 become impractical to use even for very small
m, while ladder and linear are e�cient alternatives for m as large as 15. For very large m ≈ 40,
shrink, growth, rect are able to return a strategy fairly quickly.

In the �rst experiment, we compared the average runtimes (in seconds) of the naive algorithms

with the best deterministic and best probabilistic algorithms across 100 synthetic instances for each

m from 4 to 14 (with s, τ, e1, e0 all uniformly sampled from [0, 1], [0.1, 0.4], [0.1, 0.4], [0.005, 0.1]
respectively). Comparing average runtimes lets us see howmuch timewemight take for an algorithm

for any set of parameters on average. Figure 3.8(b) shows the average runtimes as a function of m.
While naive2 and naive3 take more than 5 minutes even form as small as 5 and 7 respectively, ladder
takes less than aminute even untilm = 14, while linear takes even less time. �us, the optimizations of
Section 3.3 let us design strategies for larger m. (Our implementation of linear uses exact arithmetic,
and as a result takes longer. If we were willing to get a slightly worse solution, we may be able to

reduce the running time even further.) Note that if we are willing to use a slightly worse deterministic

algorithm, we can get strategies for substantially larger values of m. For instance, growth is able to
return a solution for m = 40 within seconds, while shrink is able to return a solution for m = 40
within a minute.

Variation of Ladder Shape: In our �nal set of experiments we studied two interesting properties of

the ladder shapes selected by ladder. We de�ne the height and width of a ladder shape to be, respec-
tively, the largest distance between the two ladders along the y axis and along the x axis respectively.
We also de�ne the slope of a ladder shape to be the ratio of the y coordinate to the x coordinate of the
decision point. Since there is no counterpart to ladders and decision points in the strategies output

by linear, we cannot study them in this way.

Results on Varying s: �e optimal ladder shape for ladder has a decision point closer to the y axis
(larger slope) when s is small and closer to the x axis (smaller slope) when s is large. In addition,
the closer s is to 0.5, the further away the decision point of the ladder shape is from the origin.

We �x e1 = 0.2, e0 = 0.2, τ = 0.05,m = 12, and vary s in increments of 0.005 from 0 until 1. �e
results are depicted in Figure 3.8(c). We �nd that the slope of the optimal ladder shape moves from

4 all the way down to 0 gradually as we increase s. (Note that we set slope = 0 when the strategy
is simply a terminating point at the origin.) �is result can be explained as follows: When s is very
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small, it is unlikely that we will get any YES answers, so more questions need to be asked to verify

that an item actually passes the �lter, but not when the item does not pass the �lter. On the other

hand, when s is large, it is unlikely that we will get any NO answers, so more questions are needed
to ascertain whether an item fails the �lter. Note that cost increases until 0.5 and then decreases, as

expected. Height and width are mirror images of each other across x = 0.5: this is expected since
e0 = e1, thus the best shape for s is the best shape for 1 − s.

3.8 RelatedWork

�e work related to this chapter falls under four categories: crowdsourced schema matching, active

sampling, �ltering applications, and statistical hypothesis testing.

Crowdsourced schema matching: Recent work by McCann et al. [139] has considered the problem

of using crowdsourcing for schemamatching. �e core of the problem is similar: the crowd provides

(possibly incorrect) answers, and the goal is to determine whether a match is true or not. �e strat-

egy used is the following: ask at least v1 questions, and stop either when the di�erence between the
number of YES andNO answers reaches a certain threshold δ, or when the total number of questions
asked is v2. �e authors prove probabilistic bounds on the maximum error from this strategy, under
speci�c assumptions for the performance of human workers. �e proposed strategy can be mapped

to a shape in our framework. In fact, we can convert the shape into a ladder shape (as described in

Section 3.3.2), and obtain a new strategy that asks fewer questions while providing the same error

guarantees. Moreover, since [139] does not optimize for the number of questions, our cost-optimized

algorithms can provide even further improvements.

Active Sampling: (We discuss active learning in detail in Chapter 3.8. Here, we provide a quick

summary, and also relationships to the results in this chapter.) �e �eld of active learning [169]

addresses the problem of actively selecting training data to ask an “oracle” (for instance, the oracle

could be an expert user) that would help train a classi�er with the least error. Our metric for error

(i.e., expected error) is the same as the 0-1 loss used in machine learning.

Typical papers studying active learning do not assume that the oracle makes mistakes, and in any

case, repeating the same question to the oracle would typically not help. However, there are some

papers that do consider the case when many interchangeable humans can be used as oracles, and we

discuss them next.

Sheng et al. [171] consider the problem of obtaining labels for training data in the context of

machine learning. Speci�cally, the problem is whether to ask for another label for an existing data
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item or whether to acquire more data items, in order to maximize the utility of the training data set

for the machine learning algorithm. Similar work has considered a pool of workers where the most

“informed”worker is asked for a label on the �y on themost uncertain item [81,188], and the accuracy

of the worker is learned as labels are obtained. Other work [163, 189] considers a setting where the

worker’s labels are provided beforehand, and the goal is to infer the labels of items and the accuracy

of di�erent workers.

None of the previous studies deal with the problem of optimizing the number of questions asked

to the crowd. In large-scale human computation, especially inmarketplaces such asMechanical Turk,

this metric is the most critical cost factor that needs to be optimized. One previous paper has consid-

ered optimizing for low cost for �ltering in conjunction with learning error rates for workers [112],

however, they only provide worst-case guarantees—in fact, they are able to show that there are no

improvements in the worst-case from dynamically changing the number of answers requested from

workers, which is clearly not true in our scenario (which focuses on the expected case). In our work

so far we have not taken into account knowledge of or discrepancies in worker accuracies, assum-

ing a rapidly changing and replaceable worker pool (as in Mechanical Turk). As future work we will

explore incorporating worker accuracy into our theory and algorithms.

Statistical Hypothesis Testing: Our problem is also related to the �eld of Statistical Hypothesis Test-

ing [187]. �is �eld is concerned with the problem of trying to estimate whether a certain hypothesis

is true or not given the observed data. One such method of estimation is to compute the LR (Like-

lihood Ratio), i.e., the ratio of the probability that a given hypothesis is true given the data to the

probability that an alternative hypothesis is true given the same data. Subsequently the LR is checked

to see if it is statistically signi�cant. In our case, our two hypotheses (for a given data item) are simply

whether or not the item satis�es the �lter. Unlike typical applications of hypothesis testing, where the

goal is to estimate the parameters of some distribution, here the distribution is provided to us (i.e.,

that the item satis�es the �lter with probability s). For Problem 3.2.2, in fact, our algorithm computes
the LR to see if it is greater than the threshold (τ) for all reachable points. However, hypothesis testing
techniques do not help us address the problem of minimizing overall cost while �ltering a large set

of data items.

Filtering Applications: Several practical applications have used heuristic strategies for �ltering, typ-

ically a majority vote over a �xed number of workers, in the context of sentiment analysis and NLP

tasks [173], categorization of URLs [34], search result evaluation [31], and evaluation of competing
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translations [195]. In fact, for all these strategies (which correspond to the triangular strategy de-

scribed earlier), we can replace them with an equivalent rectangular strategy with much lower cost

and the same answers. If the ladder or linear algorithms are used to design strategies, the cost can be

reduced even further.

3.9 Conclusions

In this chapter, we designed algorithms for crowd-powered �ltering. Filtering has wide applicability

in image, video, and text analysis. Furthermore, �ltering corresponds to a fundamental relational

operator in crowd-powered database systems.

We designed algorithms that e�ciently �nd �ltering strategies that result in signi�cant cost sav-

ings compared to commonly-used strategies in crowdsourcing applications, while ensuring the same

accuracy. In fact, the cost savings can be up to 20-30% in practice.

In the next chapter, we show how we can generalize the algorithms in this chapter, by removing

some of the simplifying assumptions (i.e., all workers have the same error rate or need to be paid the

same amount, all items are equally di�cult, or that we have no auxiliary information from automated

schemes and no latency constraints).



www.manaraa.com

Chapter 4

Algorithm 1 (Variants): Filtering

Generalizations

4.1 Introduction

In the previous chapter, we described algorithms to �nd �ltering strategies under a simple setting:

�ltering a set of items (with no prior knowledge on items), using a single in�nite pool of identical

workers, with equal costs (i.e., they all need to be paid the same amount). We designed algorithms

that generate strategies with guarantees on expected cost and expected error.

In this chapter, we consider signi�cant generalizations of our algorithms in the previous chapter.

We focus on algorithms that generate probabilistic strategies (since probabilistic strategies subsume

deterministic strategies), and consider generalizations of two types:

(a) Improvement-based: Improving the performance of the algorithms (in terms of expected cost
and error) by removing some of the simplifying assumptions used in Chapter 3. For instance,

we may wish to take into account individual worker abilities, or take into account individual

item di�culties.

(b) Functionality Addition-based: Enhancing the algorithms to support additional functionality
needed by many applications in practice. For instance, we may wish to support a constraint on

latency, which the algorithms in Chapter 3 do not support.

�e entire list of generalizations we consider can be found in Table 4.1. (We do not expect the reader

to fully understand the table at this point.) We initially focus on one important improvement-based

53
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generalization (type (a) in the list above), that of worker abilities. �e previous chapter assumes that
all humanworkers have the same error rates—all workers are equally capable at answering questions.

In practice, there are someworkers that aremuch better than others, possibly because they do amuch

more careful job.

In this chapter, we demonstrate that we can generalize the algorithms fromChapter 3 to take into

account worker abilities; we get a strategy that is optimal, but is computationally intractable to design

as well as store. �en, to combat the computational intractability, we also provide algorithms that can

generate a strategy that is e�cient to design and store, but is approximate.

Later on, in Chapter 9, we will demonstrate that the algorithms that take into account worker

abilities yield a signi�cant reduction in cost (for �xed error) as compared to algorithms considered

in the previous chapter, which make a range of simplifying assumptions. In this chapter, however,

our focus will be on algorithm design, rather than experimental evaluation.

Our second focus, a�er worker abilities, will be on incorporating prior information into our

algorithms, which is another improvement-based generalization. �e algorithms inChapter 3 assume

that we have no information about any of the items to begin with; however, there may be cases where

we have “prior information”—that is, knowledge that some items are more likely to pass the �lter

than others. �is prior information may originate from an automated algorithm, such as a machine

learning algorithm, that outputs probabilities for whether each item is likely to pass the �lter or not.

We will discuss other generalizations in Section 4.4.

4.1.1 Outline of Chapter

• We describe the answer-record representation, which is a straightforward extension of the rep-
resentation in the previous chapter. �is representation provides the optimal solution to all the

generalizations that we consider, but can be expensive to compute in some cases (Section 4.2).

– Wedescribe the complete generalization for the case ofmanyworker abilities (Section 4.2.1).

– We provide the key ideas for generalizing the answer-record representation when incor-

porating prior information (Section 4.2.2).

• We describe the posterior-based representation that provides an e�cient but approximate so-
lution to all generalizations (Section 4.3).

– We describe the representation for the basic setting considered in Chapter 3, and show

that the expected cost of the optimal strategy in this representation converges in the limit
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to the cost of the optimal strategy in the answer-record representation (Section 4.3.1).

– We describe the complete generalization using this representation for the case of many

worker abilities (Section 4.3.2).

– We provide the key ideas for generalizing the posterior-based representation when in-

corporating prior information (Section 4.3.3).

• We discuss other generalizations (Section 4.4).

We do not consider related work in this chapter since prior work related to �ltering was already

covered in Chapter 3.

4.2 �e Answer-Record Representation

In this section, we describe our �rst representation. To enable this chapter to be relatively self-

contained (independent of the previous chapter), we describe the problem setup in entirety, but under

the generalization of worker abilities. To illustrate the power of the representation, we will then dis-

cuss the generalization of incorporating prior information. We will describe other generalizations in

Section 4.4.

4.2.1 Setting withWorker Abilities

Setting:We are given a set of items I , where ∣I∣ = n. A random variableV controls whether an input
item satis�es the �lter (V = 1) or not (V = 0). �e selectivity of our �lter, s, gives us the probability
that V = 1 (over all possible items).
As before, we assume that there is no automated mechanism to examine an item and determine

for certain whether that item satis�es the �lter or not. �e only type of action we can perform on an

item is to ask a speci�c human worker wi , i ∈ 1 . . . r a question. �e human can tell us YES (meaning
that she thinks the item satis�es the �lter) or NO. �e human worker wi can make mistakes, and in

particular:

● �e false positive rate is: Pr[wi ’s answer is YES∣V = 0] = e0(wi)
● �e false negative rate is: Pr[wi ’s answer is NO∣V = 1] = e1(wi)

�e error rates e0(wi), e1(wi) are estimated either by evaluating workerwi on questions with known

correct answers, or by using prior history on worker performance. Overall, there may be some work-

ers who are less error-prone at answering questions than others, possibly because they are more dili-

gent or more capable.
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We can ask di�erent humans the same question to get better accuracy, and we assume that their

errors are independent. However, if we ask the same human the question on the same item, we will

get the same answer. �erefore, we will ask the question on a given item to a given human at most

once.

Note that our techniques are easily adapted to the somewhat simpler setting when there are dif-

ferent worker classes, each with an in�nite number of workers. In this setting, there are r classes
of workers with error rates e0(wi), e1(wi), i ∈ 1 . . . r, such that there are in�nitely many workers in
each class (and each worker in a given class has the same error rate). In this scenario, even a�er re-

ceiving an answer from a worker in one class, we may still get additional (possibly di�erent) answers

from workers in the same class (with the same error rate). We return to this simpler setting in the

posterior-based representation section (Section 4.3).

Strategies: A strategy F is a computer procedure that takes as input one item, asks one or more
humans questions on that item, and eventually outputs either Pass or Fail. A Pass output represents

a belief that the item satis�es the �lter, while Fail represents the opposite. We de�ne an algorithm to
be a procedure that, given parameters and constraints, generates a strategy.

Since humans may have di�erent error rates, the state of processing for an item a�er some ques-

tions are asked can be completely represented using a state variable S = (x1, y1, x2, y2, . . . , xr , yr),
where xi is an indicator variable indicating whether workerwi answered YES for the question on the

item, and yi indicates whether worker wi answered NO for the question on the item. If xi = yi = 0,
then wi has not been asked a question yet on the item; if xi = 1, yi = 0, then wi has been asked a

question and has answered YES; and if xi = 0, yi = 1, then wi has been asked a question on the item

and has answered NO.�e case where xi = yi = 1 can never arise.
Note that the reason why the state variable S is a complete description of the state of processing is

that the order in which the answers are provided by humans is not important; only the set of YES/NO

answers is important, and the identity of the workers who provided the answers. �erefore, the state

variable S captures all the relevant information about an item necessary for a strategy to maintain.
Recall that in Chapter 3, S was simply the count of the YES and NO answers. �is information was
su�cient for a strategy to maintain because all workers were assumed to be equally error-prone in

that setting, and therefore, the identity of the worker giving a speci�c answer was not important.

We therefore call this representation the Answer Record Representation (i.e., the state or process-
ing is the complete set of answers).

At a given state S, a strategy F probabilistically does one of the following: (a) stop executing,
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and return Pass on the item, (b) stop executing, and return Fail on the item, or (c) continue exe-

cuting (Cont), i.e., ask an additional question for that item. �us, at a given state S, the strategy
returns Pass, i.e., F(S) = Pass, with probability apass(S), returns Fail, i.e., F(S) = Fail with proba-

bility a f ail (S), and will ask another human a question on that item, F(S) = Cont with probability

acont(S) = 1 − apass(S) − a f ail(S). If either Pass or Fail returned at a state, we say that the strategy
terminates. IfCont is returned at a state, then an answer is requested from one of the unasked human

workers–those for whom xi = yi = 0, with equal probability. �us, in this scenario, we do not control
which human worker answers our question—this scenario is relevant in marketplaces like Mechan-

ical Turk. We consider the case where we may control which worker is asked to answer the question

in Section 4.4.4. (Recall that in Chapter 3, we referred to strategies with probabilistic decisions as

probabilistic strategies; here, for convenience, we simply refer to them as strategies.)

Metrics: To determine which strategy is best, we study the two metrics of error and cost. We start by

de�ning two quantities, given a strategy:

● p1(S) is the probability that the strategy reaches S and the item satis�es the �lter (V = 1); and
● p0(S) is the probability that the strategy reaches S and the item does not satisfy the �lter (V =
0).

We can now de�ne the following metrics:

● E is the sum of expected errors across all states. �e expected error at a state S is simply the
probability that the strategy terminated at S with an error being made.

E = ∑
S
apass(S) ⋅ p0(S) + a f ail(S) ⋅ p1(S) (4.1)

● C is the sumof expected cost across all states. �e cost at a state S is the probability that the state
was reached, i.e., (p0(S) + p1(S)), multiplied by the probability that a termination decision
was taken, i.e., (apass(S) + a f ail(S)), multiplied by the cost, i.e., the total number of answers
so far: ∑i∈1...r[xi + yi].

C =∑
S

[p0(S) + p1(S)] ⋅ (apass(S) + a f ail(S)) ⋅ ( ∑
i∈1...r

[xi + yi]) (4.2)

�e probabilities p0 can be iteratively computed using the following equations:



www.manaraa.com

CHAPTER 4. ALGORITHM 1 (VARIANTS): FILTERING GENERALIZATIONS 58

p0(x1, y1, . . . , xr , yr) = ∑
1≤i≤r; x i=1∶ R=(x1 ,y1 ,...,x i−1 ,y i−1 ,0,0,...,xr ,yr)

1

b
⋅ e0(wi) ⋅ p0(R) ⋅ acont(R) +

∑
1≤i≤r; y i=1; R=(x1 ,y1 ,...,x i−1 ,y i−1 ,0,0,...,xr ,yr)

1

b
⋅ (1 − e0(wi)) ⋅ p0(R) ⋅ acont(R)

p0(0, 0, . . . , 0, 0) = (1 − s)

where b is the number of xi or yi that are 0, i.e., the number of workers who have not been asked
yet. �us, we simply sum up the probabilities that the strategy reaches (x1, y1, . . . , xi−1, yi−1, 0, 0, . . . ,
xn , yn) and gets a YES from a speci�c worker wi (out of b) who has not been asked before, for all i.
Andwe add this sum to the probabilities that the strategy reaches (x1, y1, . . . , xi−1, yi−1, 0, 0, . . . , xn , yn)
and gets a NO from a speci�c workerwi (out of b) who has not been asked before, for all i. �erefore,
the probability of getting to a state S (and the item not satisfying the �lter) is the sum of the proba-
bilities of getting to one of the previous states S′ that is identical to S but has one xi or yi diminished
by 1 (with the item not satisfying the �lter), and getting the appropriate answer (YES/NO) from the

appropriate worker i. (Naturally, the states S′ that are invalid are omitted from the summation.)
For a strategy, we de�ne the states S for which p0 or p1 are non-zero as reachable states (that is,

there is a non-zero probability of reaching them while executing a strategy.)

Problem: Given input parameters selectivity s, false negative rates e1(wi), and false positive rates
e0(wi), we consider the following problem:

Problem 4.2.1 (Abilities) Given an error threshold τ and a budget threshold per itemm, �nd a strategy
that minimizes C under the constraint E < τ and

∀ reachable (x1, y1, . . . , xr , yr) ∶ ∑
i∈1...r

(xi + yi) ≤ m

Since we want to ensure that the strategy terminates, we enforce a threshold m on the maximum
number of questions we can ask for any item (which is nothing but a maximum budget for any item

that we want to �lter).

Solution:We present a solution to Problem 4.2.1 that generalizes the solution presented in Chapter 3.

As in Chapter 3, our solution leverages linear programming.

Even though the equations describing relationships between variables are highly non-linear (ref.

Equation 3.2, 3.3), we can convert these into linear equations by considering the �ow of paths. A path
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is a speci�c sequence of answers that can be used to get to a given state S. For instance, if the number
of workers r = 2, and S0 is (1, 0, 1, 0) (i.e., worker w1 answered YES and w2 answered YES), then one
path to get to S may be w1 answered YES �rst, followed by w2. �e only other possible path is for w2
to answer YES followed by w1 answering YES. Of course, not all paths may be possible in a strategy.
�at is, it may be possible that a strategy stops and returnsPasswhenw2 answers YES, and therefore,
the latter path is not feasible.

We de�ne a new variable called path(S) to denote the number of paths entering S. Alternatively,
this variable can be regarded as the number of ways we can get from the origin (0, . . . , 0) to S within
a strategy. In our example above, say that the two possible paths are feasible, and assume the strategy

always continues from (1, 0, 0, 0) and from (0, 0, 1, 0). �en path(S) is 2. However, assume that
from (1, 0, 0, 0) the strategy continues only with 0.5 probability. �en in this case path(S) is 1.5.
Notice that path(S) can be computed recursively. Continuingwith our example, observe that the

number of ways of getting to S0, i.e., path(S0) is equal to the sum of the number of ways of reaching
S0 via S′0 = (0, 0, 1, 0), and the number of ways of reaching S0 via S′′0 = (1, 0, 0, 0). If, for instance,
acont(S′0) = 0, that is, the strategy always terminates at S′0, then, the former number is 0. If, on the
other hand, acont(S′0) = 0.5, that is, with probability half, the strategy asks an additional question at
S′0, then the former number is 0.5× path(S′0), i.e., the number of paths leaving S′0 is half the number
of paths reaching S′0 (alternatively, half the number of ways to reach S′0).
From each state S, therefore, the incoming paths, path(S), �ow onward to other states in the fol-

lowing manner: pathpass(S) is the fraction of paths that stop at S (with the strategy returning Pass);
path f ail(S) is the fraction of paths that stop at S (with the strategy returning Fail); and pathcont(S)
is the fraction of paths that continue onward to other states.

We therefore have:

pathpass(S) = apass(S) × path(S)

path f ail(S) = a f ail(S) × path(S)

path(S) = pathcont(S) + pathpass(S) + path f ail(S)

�at is, apass and a f ail alternatively represent the fraction of the path at a state that is lost by returning

a Pass or Fail decision respectively. �e remaining (fractional) number of paths, pathcont , continue
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onward to other states. Via conservation of paths, we have:

path(x1, y1, x2, y2, . . . , xr , yr) =

∑
0≤i≤r; x i=1

pathcont(x1, y1, x2, y2, . . . , xi−1, yi−1, 0, 0, . . . , xr , yr) +

∑
0≤i≤r; y i=1

pathcont(x1, y1, x2, y2, . . . , xi−1, yi−1, 0, 0, . . . , xr , yr)

In other words, path �ow can come to a state by asking any one of the r workers and getting any one
of the two possible answers (YES/NO).

It can be shown that the rest of the variables are linear equalities on the path variables. For some
constants const(S), const′(S) (independent of the strategy and only dependent on S) we have:

p0(S) = const(S) × path(S)

p1(S) = const(S) × path(S)

E = ∑S const(S) ⋅ pathpass(S) + const′(S) ⋅ path f ail(S)

C = ∑S const(S) ⋅ pathpass(S) + const′(S) ⋅ path f ail(S)

�us, we have linear equations relating all the variables of interest, along with corner cases:

path(0, . . . , 0) = 1

∀S = (x1, y1, . . . , xn , yn); ∑
i∈1...r

[xi + yi] = m + 1 ∶ path(S) = 0

And the objectives are linear as well, enabling a linear programming solution.

�e Linear Program (LP) has a total of O(m2r) variables, with total size of the LP encoding
being O(pol y(mr)). As a result, the complexity of the solution is: O((m2r)3.5 × log(pol y(mr)), i.e.,
O(m7rr logm). �us, we have:

�eorem 4.2.2 (Abilities) We can �nd the optimal strategy for Problem 4.2.1 in O(m7rr logm).

Discussion:�eastute readermay have noticed that the complexity, especially when r is large, can be
rather high, due to r being present in the exponent of the complexity expression. �erefore, the linear
programming approach will not scale if r is large. Instead, we will need to resort to an approximate
approach, presented in the next section.
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4.2.2 Incorporating Prior Information

We now generalize our algorithms for when we have prior information about items. For instance, we

may have a machine learning algorithm (say a classi�er) that analyzes items and assigns probabilities

of passing the �lter to each item. As an example, if we were doing content moderation of images,

there are automated algorithms that analyze each image (perhaps by using the distribution of colors

or by looking for speci�c patterns) and provide a probability for whether the image is likely to be

inappropriate for children.

Modi�ed Setting: Instead of having a single prior probability or selectivity s for all items, we now
have prior probabilities si for each item i, representing the probability of the item satisfying the �lter.
We let s′1, s′2, . . . , s′l be the distinct set of priori probabilities. We expect l to be much smaller than n,
the total number of items. For instance, if s1 = s2 = s5 = 0.8, s3 = s4 = s6 = 0.3, then s′1 = 0.8, s′2 = 0.3,
i.e., l = 2.

Solution: Our algorithm will e�ectively design a distinct strategy for each distinct probability s′j. We
characterize the new state space as: (x1, y1, . . . , xr , yr , j), j ∈ 1 . . . l . �e last coordinate in this state
space e�ectively encodes the a-priori probability of the item we are operating on.

Each itemwith priori probability si = s′j will then begin �ltering at state (0, . . . , 0, j), i.e., the start
state for the strategy corresponding to s′j. On asking a question and getting an answer from a worker,
we transition from (x1, y1, . . . , xr , yr , j) to (x1, y1, . . . , xi + 1, yi , . . . , xr , yr , j) or (x1, y1, . . . , xi , yi +
1, . . . , xr , yr , j) — that is, the last coordinate remains �xed, while one of the other coordinates is
incremented based on the given worker answer.

When computing the strategies in the previous section, we had set p0(0, 0, . . . , 0) = 1 − s. Here,
we have a di�erent probability p0 depending on the last coordinate. We have,

p0(0, 0, . . . , 0, j) = f rac(s′j) × (1 − s′j)

�e probability above is a product of two factors: �e �rst factor is the fraction of items that begin

at (0, . . . , 0, j), i.e., the probability that any item has prior probability s′j. �e second factor is the
probability that an item does not satisfy the �lter, given that it begins processing at (0, . . . , 0, j)—i.e.,
(1 − s′j)
Given these modi�cations, once again, the path �ow property can be leveraged to derive a linear

program, giving us:

�eorem 4.2.3 (Problem 3.2.1+Priors) We can �nd the optimal strategy for Problem 3.2.1 with priors
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in O(m7rrl 3.5 log(ml) +m2r l), where l is the number of distinct si .

�e proof of complexity is a straightforward extension of the argument in the previous section.

Discussion Notice that even if r = 1, l can be as large as n (the total number of items), and as a
result, this approach can be rather ine�cient when l is large. Instead, we will need to resort to an
approximate approach, presented in the next section.

4.3 �e Posterior-Based Representation

We now describe the posterior-based representation. �is representation, unlike the previous repre-

sentation, is approximate, that is, the representation does not comprise a complete record of the state

of processing of an item— some information is lost. However, the amount of information that is lost

is user-controlled; i.e., there is a parameter that allows the user to specify how much information is

lost. We �rst describe the representation for the basic setting considered in Chapter 3—that is, all

workers are assumed to be equally error-prone. Considering the basic setting allows us to demon-

strate, for a simple case, how the states in the answer-record representation, discussed previously,

map to those the posterior-based representation. We then show that while the strategies computed

using the posterior-based representation may not have optimal cost, as the amount of information

recorded is increased, the strategies computed using the posterior-based representation tend towards

optimal cost.

�en, in the next section, we will provide generalizations for worker abilities (that we considered

in Section 4.2.1), and then for incorporating prior information (that we considered in Section 4.2.2).

Unlike the answer-record representation whose state space scales rapidly (with some parameter de-

pendent on the generalization considered), the dimensionality of the posterior-based representation

stays constant independent of which generalization is considered.

4.3.1 Basic Setting

Outline:We begin by describing the mapping between representations, followed by showing that no

information is lost (for the basic setting) when considering the initial version of the posterior-based

representation. �en, we introduce approximations, and prove that even though approximations lead

to sub-optimal strategies due to loss of information, in the limit, the the strategy computed using the

approximate posterior-based representation is asymptotically optimal.
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Figure 4.1: Mapping Between Representations: Le�: Answer-record Representation; Middle: Continuous

Posterior-based Representation; Right: Discretized Posterior-based Representation

Preliminaries: In the basic setting, the answer-record representation had a collection of states S
represented using a pair (x , y), where x is the total number of YES answers so far, while y is the total
number of NO answers so far, as shown in Figure 4.1 (le�). �e �gure shows a strategy that has a

Cont decision (Yellow) for all states (x , y) such that x + y ≤ 2, and has Pass (blue) for (3, 0) and (2,
1), and Fail (red) for (0, 3), and (1, 2).

Instead, the posterior-based representation has a new state space represented using two compo-

nents (p, c), encoding a probability p, which represents the probability that an item has V = 1 given
the answers obtained so far, denoted:

p = Pr[V = 1∣(x , y)]

and cost c, which represents the total cost incurred so far, i.e., (x + y).
As in the answer-record representation, in this representation, a strategy takes as input a state

(p, c), and outputs a probabilistic decision: “Fail”, “Pass”, or “Continue”.

Mapping:We show the correspondence by mapping states in the strategy in the answer-record (le�)

representation to the posterior-based (middle) representation. �e mapping is shown in Figure 4.1
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for s = 0.7, e0 = e1 = 0.2 with dashed lines for three states (other mappings are omitted for clarity).
As can be seen in the �gure, the state (0, 0) maps to precisely (s, 0) = (0.7, 0), since Pr[V =

1∣(0, 0)] = s = 0.7, and since x + y = 0 + 0 = 0. �e state (1, 0) maps to precisely (0.903, 1) since
Pr[V = 1∣(1, 0)] = se1

se1+(1−s)(1−e0) = 0.903, and since x + y = 1 + 0 = 1, while state (0, 1) maps to
precisely (0.368, 1) since Pr[V = 1∣(0, 1)] = 0.368, and since x + y = 0 + 1 = 1.

�us, each state (x , y) (in the le� in the �gure) maps to precisely one state in the new represen-
tation (in the middle in the �gure). It is also easy to see that each state in the new representation can

correspond to at most one state (x , y). To see this, let there be two distinct states (x′, y′) and (x , y)
in the answer-record representation that map to the same state in the posterior-based representation.

�us, x′ + y′ = x + y. Now, without loss of generality, let x′ < x. �en, the p value associated with
(x′, y′) is smaller than that associated with (x , y), leading to a contradiction. �us, strategies in the
answer-record representation may be represented in the posterior-based representation without any

loss in information.

Optimality: Every strategy in the answer-record representation can be represented in the posterior-

based representation, by substituting the decisions for every state in the posterior-based representa-

tion from the answer-record representation, as we saw in Figure 4.1. Furthermore, there are no better

strategies in the posterior-based representation, that is, the best strategy in the posterior-based rep-

resentation is no better than the best strategy in the answer-record representation. �is is because

the only states in the posterior-based representation that matter are the ones that are reachable in any

strategy; those are precisely the ones that have a corresponding state in the answer-record represen-

tation. �us, we have:

�eorem 4.3.1 (Optimality) For the basic setting, the optimal strategy in the posterior-based represen-
tation would be no better, and no worse, in terms of expected monetary cost, than the optimal strategy
in the answer-record representation.

Approximation: �e theorem stated above states that the optimal strategy in the posterior-based

representation would have same expected cost as the optimal strategy in the answer-record repre-

sentation. Instead of storing the set of reachable states in the posterior-based representation and

computing a strategy using those states, we instead compute strategies on an approximate discretized

version of the entire posterior-based representation states; when we consider the generalization of

worker abilities, approximations will become more necessary. As we will see in Chapter 9, even our

approximate solutions have very good performance (i.e., very low cost for same error threshold).

In particular, we approximate the state (p, c) by using discretization. Wediscretize the probability
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p into intervals. (Note that c is already discrete.) We use a discretization factor δ, and we divide the
[0, 1] interval for p into δ intervals of size 1/δ each. For instance, if δ = 2, then [0, 1] will be divided
into two parts: [0, 0.5], (0.5, 1]. �e larger the discretization factor δ, the smaller will be our intervals,
and our intervals will be more in number.

Our state space S is now restricted to (p, c) where p is an integer multiple of 1/δ. �e discretized
state space is depicted in Figure 4.1 (Right) for δ = 5. As can be seen in the �gure, the two blue
states in the full posterior-based representation (middle) map to the same state in the approximate

posterior-based representation (right); there are in�nitely many other mappings from the states in

the full representation to the approximate discrete one, but we omit them from the �gure for clarity.

Now, if, on getting an answer a for a question asked when at state (p, c), (where p is an integer
multiple of 1/δ), our updated posterior probability value is p′ and the cost is c′, we round p′ up to
p′′, the nearest integer multiple of 1/δ, and the new state will be (p′′, c′).

Approximate Solution: Now that we have a discrete set of states, we can once again use path-based

reasoning, and linear programming on paths to �nd the best strategy, as in the answer-record rep-

resentation. (Notice that our approximate posterior-based representation is once again a Markov

Decision Process: we have a set of states, decisions to be made at each state, and probabilistic transi-

tions from each state based on the decision that is made.)

We therefore have the following theorem, which uses a straightforward extension of the com-

plexity argument of �eorem 4.2.2:

�eorem 4.3.2 We can �nd a strategy using the approximate posterior-based representation for the
basic problem in Chapter 3, in O(δ3.5m3.5 log(mδ)), where δ is the discretization factor.

�us, by adjusting the value of δ, the user can control how much computational cost she wishes to
use to compute the strategy. �e more computational cost used by the user, the better the strategy

will be, as we will see next.

Convergence: As we saw in Figure 4.1, multiple states in the answer-record representation may map

to the same state in the approximate posterior-based representation. For example, the two blue states

in the answer-record representation map to two separate states in the full posterior-based represen-

tation, both of which map to a single discrete blue state in the approximate posterior-based repre-

sentation.

However, as we increase the discretization factor (and therefore the number of intervals), the

likelihood that multiple states in the answer-record representation will map to the same discrete

state in the approximate posterior-based representation will go down; as a result, the cost of the
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optimal strategy in the approximate discrete posterior-based representation tends towards optimal

cost. Formally,

�eorem 4.3.3 (Asymptotic Optimality) As δ → ∞, the cost of the optimal strategy in the approx-
imate posterior-based representation will tend to the cost of the optimal strategy in the answer-based
representation.

Discussion: In this subsection, we demonstrated that even though the strategies computed using

the approximate posterior-based representation do not achieve the same low monetary cost of the

exact answer-record representation, we can get as close as we want to that cost by varying the user-

controlled discretization factor δ.
�is guarantee seems to not be that useful for the basic setting of Chapter 3, where the answer-

record representation leads to a tractable solution. However, we will �nd that similar guarantees

hold for the generalizations considered next. While tractable solutions are not possible for those

generalizations using the answer-record representation, they are indeed possible with the posterior-

based representation.

4.3.2 Generalization of Worker Abilities

Recall that in Section 4.2.1, for the answer-record representation, we found that representing the

answers from each worker individually led to an explosion in the state space. In this section, we

describe how we may leverage the posterior-based representation when we have worker abilities.

Also in Section 4.2.1, we had brie�y mentioned that our techniques would directly apply to the

simpler generalization of in�nite worker classes, where instead of having r distinct workers, we had r
in�nite worker classes, with each class having a distinct error rate. �e key di�erence is that if one of

the r workers answers a question on an item, that worker will not be asked from that point on; while
in the r in�nite worker classes case, the same worker class may be used multiple times on the same
item.

Here, we revisit that generalization: our guarantees for asymptotic optimality only hold for the

simpler generalization of rworker classes, and do not hold for the generalization of r distinct workers.
�is is because even as δ increases without bound, for the case of r distinct workers, if we do not
record exactly which worker gave us which answer (like we do in the answer record representation),
we will not be able to achieve optimal cost. �us, in adapting to r distinct workers, there are two
sources of approximation: one, from discretization (like we saw in the previous section), and second,

from using the r in�nite worker classes generalization for the r distinct worker case.
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We begin by describing the changes in representation that apply to the entire section, then discuss

the in�nite worker classes case (along with the associated optimality guarantees), and then discuss

the r distinct workers case.

Changes in Representation: Unlike in the answer-record representation, where we had 2r coordi-
nates in the representation corresponding to the r workers, here, the posterior-based representation
continues to use two coordinates (p, c). �us, the size of the posterior-based state space does not
change when we have many workers with di�erent abilities — but, as we will see later, the cost of

computing the strategy does change.

We brie�y discuss how transitions happen in this new representation; in short, the only aspect

that changes is how the probability p is updated on receiving an answer. At a state (p, c), if a Cont
decision is made (instead of a Pass or a Fail), then a worker is asked the question on the item, and

the probability p (of V = 1 given the set of answers, including the new answer), is updated to p′, and
c is updated to c′ (based on the cost of having a worker answer a question).

In�nite Worker Classes:We �rst consider the full posterior-based representation before discretiza-

tion, and then discuss discretization. Recall that in the in�nite worker classes case, instead of having

r workers with di�erent abilities, we have r in�nite worker classes. �at is, there are r classes of work-
ers, such that, at any state, with probability 1/r, our question is answered by a worker with error rate
e0(w1), e1(w1), with probability 1/r, by a worker with error rate e0(w2), e1(w2), and so on. �ese
classes are in�nite; that is, if we sample a worker from class 1, the probability of getting a worker from

class 1 does not change in the future. In this scenario, the answer-record representation is the same

S = (x1, y1, . . . , xr , yr): but with one di�erence; in the previous setting, at most one of xi or yi is 1;
here xi or yi can both be as large asm (because there may be as many asm YES or NO answers from
a given worker class.)

We state the following lemma without proof.

Lemma 4.3.4 (No Loss of Information) With in�niteworker classes, all states s1, s2, . . . , sa in the answer-
record representation thatmap to the same state s = (p, c) in the full posterior-based representation have
the following properties:

● For the same answer obtained at s1, . . . , sa (YES/NO from any worker class), the resulting states
s′1, s′2, . . . , s′a all map to the same state s′ = (p′, c′).
● �e probability of getting a YES or a NO from a speci�c worker class at s1, . . . , sa, given that a
question is asked, is identical for each of s1, . . . , sa.

We can now state the following theorem:
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�eorem 4.3.5 (Optimality with Worker Classes) With in�nite worker classes, the optimal strategy
in the full posterior-based representation has the same cost as the optimal strategy in the answer-record
representation.

Proof 4.3.6 �e proof of the above theorem is not as straightforward as the proof of �eorem 4.3.1,
where in we could simply show a one-to-one correspondence between states in the answer-record and
posterior-based representations.

For convenience, we prove the above theorem when there are two worker classes, but our technique
will work for the r-worker class case. Let S ′ be the subset of states in the posterior-based representation
that are reachable if no Pass/Fail decisions are made at any state until c = m (i.e., the probabilities of
Pass or Fail are 0 until c = m), while S is the set of all states in the answer-record representation. For
each state s ∈ S there is a state s′ ∈ S ′ which it maps to. For each state s′ ∈ S ′, there can be multiple
states s1, s2, . . . , ∈ S that map to it.

We show that for every strategy in the answer-record representation, we can �nd a better strategy in
the answer-record representation such that the same decision is made for all states that map to the same
state in the posterior-based representation. �is strategy is therefore a strategy in the posterior-based
representation.

We use induction starting from states at (∗,m). Consider the set of all reachable states in S that
map to a speci�c (p,m0) in the posterior-based representation. It is easy to show that the same decision
must be made at all those states (Pass or Fail). Else, we can improve the strategy by ensuring that the
same (better) decision is made at all states. �us, all the states in S mapping to (p,m) must have the
same decision.

Now assume that all states until c = i have been mapped to their corresponding states, with the
identical decisions for all states in S . Consider states at c = i − 1. Let there be two states such that they
both map to (p, i − 1). �ese states are identical in that they transition to the same states a�er asking a
question. Without loss of generality, assume that Pass is better at the states than Fail. In that case, the
two states can only be improved by having the Fail probability set to 0. Now, we have two states such
that the Continue probability is x for one, and y for the other with x < y. Let the current path �ow into
the �rst state be f1 and the path �ow into the second state be f2. �e lemma above indicates that the path
�ow from both these states will be indistinguishable to future states. If we set the continue probability
for both states to be ( f1x + f2y)/( f1 + f2), then the same amount of path �ow leaves both the states, and
the strategy is unchanged in terms of cost and error. �is generalizes to the case when we have multiple
states mapping to the same one.



www.manaraa.com

CHAPTER 4. ALGORITHM 1 (VARIANTS): FILTERING GENERALIZATIONS 69

�erefore, all states in S mapping to (p, i − 1) for all p in the optimal strategy must have the same
decision.

Hence proved.

Furthermore, we have:

�eorem 4.3.7 (Asymptotic Optimality) For in�nite worker classes, as δ →∞, the cost of the optimal
strategy in the approximate posterior-based representation will tend to the cost of the optimal strategy
in the full posterior-based representation.

Approximation to Worker Abilities:While we have proved optimality for the posterior-based rep-

resentation for in�nite worker classes, the proof does not capture the worker abilities generalization

discussed in Section 4.2.1 precisely, because as soon as a worker answers a question (with a YES/NO),

the worker can no longer be asked any further questions. �erefore, by representing the state using

just two numbers p, c, we are certainly losing information of which workers have already answered
questions, and our solution will be necessarily approximate.

We now further approximate via discretization (as discussed in the previous section). �us, in

this case, there are two sources of approximation.

However, as we will see in the experiments in Chapter 9, the two approximations we have made

do not hurt performance; our solution is still near-optimal. We have the following, which uses a

straightforward extension of the complexity argument of �eorem 4.2.2:

�eorem 4.3.8 We can �nd a posterior-based strategy for the Problem 4.2.1 with worker abilities pro-
vided, in O(m3.5δ3.5 log(mrδ) +mδr), where δ is the discretization factor.

Notice that r appears as a logarithmic factor in �rst term of the complexity. �is is because the linear
equations in the linear program scale up by O(r)—we need to consider transitions from each state
(p, c) based on r possible answers: YES/NO from each worker. Since the complexity is no longer
exponential in r, it is much faster to compute the optimal strategy in the approximate posterior based
representation than it is in the answer-record representation.

4.3.3 Incorporating Prior Information

We now consider the generalization described in Section 4.2.2. Recall that our approach for gener-

alization in the answer-record representation was to have a strategy computed for each individual

distinct prior probability s′j value as provided by an automated algorithm or human. �is number
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could be as large as O(n), where n is the number of items. As a result, our generalization, even when
the number of workers or worker classes is small, ended up being di�cult to compute.

We now discuss how we may leverage the posterior-based representation S = (p, c) for this gen-
eralization. We discuss the generalization for the basic setting, that is, all workers are alike and inde-

pendent, though our technique is easily generalizable to when we have distinct worker abilities.

�e key idea that we use for this generalization is to set the path �ow into (s′j , 0) to be equal to
f rac(s′j), i.e., the fraction of items with prior probability s′j. �us, the total path �ow into all states
with cost c = 0 is still 1, as before.
With the full posterior-based representation, the optimal strategy has just as low cost as the

answer-record representation, formalized in the theorem below:

�eorem 4.3.9 (Optimality) With s1, s2, . . . , sn provided, the optimal strategy in the posterior-based
representation has the same cost as the optimal strategy in the answer-record representation.

Wewill now discretize the probability p, as before. As we increase the discretization factor δ, the cost
of the optimal strategy in the discretized posterior-based representation will tend to the cost of the

optimal strategy in the full posterior-based representation.

�eorem 4.3.10 (Asymptotic Optimality with Priors) As δ →∞, with priors, the cost of the optimal
strategy in the approximate posterior-based representation will tend to the cost of the optimal strategy
in the answer-record representation.

We then have:

�eorem 4.3.11 We can �nd a posterior-based strategy for Problem 4.2.1 with prior probabilities pro-
vided, in O(δ3.5m3.5 log(mlδ) + lmδ), where δ is the discretization factor.

�us, unlike the answer-record representation for this generalization, this representation does not

have a computationally expensive O(n3.5) factor.

4.4 Other Generalizations

We now discuss other generalizations described in the introduction. We �rst discuss generalizations

that improve the cost (for �xed error), then discuss generalizations that provide enhanced function-

ality. For the sake of clarity, we describe the addition of each individual aspect one at a time to the

basic setting discussed in the previous section. In practice, wemay wish to use all the aspects at once.

It is straightforward to construct the solution involving all aspects at the same time.
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Furthermore, we describe our generalization for the answer-record representation. It is straight-

forward to construct the posterior-based representation based on our solution for the answer-record

representation.

We describe the following generalizations:

(a) Improvements:

(1.) Di�culty: �e algorithms in Chapter 3, and in this chapter so far assume that all items
are equally hard or equally easy to �lter—that is, they assume that all humans have the

same error rate on every item. However, this assumption may not hold in practice. As

an example, checking if a blurry picture contains a cat is much harder to do (and is more

error-prone) than a clear picture.

(b) Additions:

(1.) Requesting Speci�cWorkers:�e algorithms in Chapter 3 and in this chapter so far do not
request that speci�c workers answer, nor pay workers di�erently. InMechanical Turk, for

instance, there are workers with quali�cations who are paid more while workers without

quali�cations are paid less, and for any question, we may choose to use a more quali�ed

or less quali�ed worker. Here, we will consider the addition of the functionality of being

able to request that speci�cworkers answer and being able to pay themdi�erent amounts.

(2.) Latency: �e problem statements described so far only have monetary cost and error as
objectives, not latency. Latency is important in many crowdsourcing applications. We

will consider the addition of a latency constraint in our problem statement.

(3.) Scoring:�eproblem statements described so far only consider binary �ltering: wewould
also like to perform scoring, i.e., identifying the appropriate score or rating of an item,

say from 1 . . . 5. Furthermore, we allow weighted error objectives, i.e., di�erent ways of

assess the result of �ltering. For instance, it is much worse to score an item with true

rating 1, as a 5, instead of a 2.

4.4.1 Outline and Summary of Results

In Table 4.1, we show the complexity results for each of the generalizations considered; the two

columns correspond to the complexity of algorithm computing the strategy using the answer-record

representation, and the complexity of the algorithm computing the strategy using the posterior-based

representation.
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Functionality Answer-record Approximate Posterior-based (δ)
Problem 4.2.1 m7rr logm (mδ)3.5 log(mrδ) +mδr
Problem 4.2.1+Priors m7rrl 3.5 log(ml) +m2r l (mδ)3.5 log(mrlδ) +mδrl
Problem 4.2.1+Di�culty m7rr log(md) +m2rd (mδ)3.5 log(mrdδ) +mδrd
Problem 4.2.1+Picking Workers m7rr logm (mδ)3.5 log(mrδ) +mδr
Problem 4.2.1+Latency m7rrt3.50 log(mt0) +m2r t0 (mδt0)3.5 log(mrδt0) +mδrt0
Problem 4.2.1+Scores m3.5ruru logm +mru (mδ(u−1))3.5u log(mrδ) +mδu−1r

Table 4.1: Comparison of complexity: For clarity, we only show the complexity of adding one generalization

at a time to the setting of Problem 4.2.1

Wedivide the rows into two parts: the complexity on adding each of the individual improvement-

based generalizations to the setting with worker abilities, followed by the complexity on adding each

of the functionality addition-based generalizations to the setting with worker abilities.

4.4.2 Overall Approach to Generalizations

Our approach in addressing the generalizations will be to construct a representation that records all

possible information pertaining to the state of processing of an item (possibly by adding additional

dimensions), and then leveraging path �ows so that the optimal strategy can be found using linear

programing. �at is, we need to show that p0, p1, E, C are linear functions of the path variables
under new assumptions. �is process in fact requires the same steps we have used above for the two

generalizations of worker abilities and prior information:

1. Describing the new assumptions and the new metrics.

2. Constructing the state space and arguing that the state space captures all the information nec-

essary for a strategy to make a decision at a state.

3. Describing the set of possible decisions made at a state (sometimes more than Pass, Fail, Con-

tinue).

4. Capturing the metrics of a strategy using non-linear equations like Equations 3.2, 3.3 above

5. Arguing that by considering path �ow, the transformation of the non-linear equations into

linear equations and constraints is correct.

Since describing all the items enumerated above is rather tedious, we will instead only describe

the key ideas associated with each of the generalizations.
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We begin with the improvement generalization, then discuss functionality addition generaliza-

tions.

4.4.3 Improvement Generalization: Di�culty

In the previous section, and in the previous chapter, we assumed that the error rate e0, e1 is the same
for every item— that is, e0 and e1 are �xed. However, this assumption may not hold in practice. For
instance, when identifying if a picture contains a cat, humans are much more likely to answer the

question correctly if the picture is clear than if it is blurry.

Instead of having a single false positive or false negative rate for all items, we assume that there

is an inherent known distribution across error rates for items. We have the following (discrete) dis-

tributions — estimated in advance using sampling, or using prior history:

Pr[e0∣V = 0] and Pr[e1∣V = 1]

For instance, it may be the case that for items that satisfy the �lter (V = 1), 10% of the items are really
hard for a human to judge, with e1 = 0.4 (i.e., most people make mistakes for those items), and 90%
of the items are really easy for a human to judge, with e1 = 0.1 (i.e., most people answer questions
correctly for those items).

�en, p0 — the probability of arriving at a state S = (x1, y1, . . . , xr , yr) and the item satisfying
the �lter — is now a sum of quantities instead of a single quantity: (where const(S), const′(S) are
constants that depend just on S and not on the strategy)

p0(S) = Pr[reach(S),V = 0] = Pr[reach(S)∣V = 0] ⋅ Pr[V = 0]

= ∑
e
Pr[e0 = e∣V = 0] ⋅ Pr[reach(S)∣V = 0 ∧ e0 = e] ⋅ Pr[V = 0]

= path(S)∑
e
Pr[e0 = e∣V = 0] ⋅ const(S)

= path(S) ⋅ const′(S)

Similar relationships hold for p1. It is easy to see that E ,C are also linear functions of the path
variables. �us, we have:

�eorem 4.4.1 (Di�culty) We can �nd the optimal strategy for Problem 4.2.1 with di�culty informa-
tion in O(m7rr logmrd +m2rd), where d is the number of discrete values for e0, e1.



www.manaraa.com

CHAPTER 4. ALGORITHM 1 (VARIANTS): FILTERING GENERALIZATIONS 74

Incidentally, notice that di�culty also captures the case where errors between humans are corre-

lated; the fact that many humans are making mistakes on the same item can be explained by the item

having a higher error rate or di�culty than a di�erent non-ambiguous item.

4.4.4 Functionality Addition Generalization: PickingWorkers with Costs

Unlike the situation in Section 4.2.1, where the strategy is assigned aworker randomlywhen it chooses

to ask a question, we now consider the case where we can choose to ask any one of our r workers, who
have di�ering costs c1, . . . , cr . �is scenario is relevant in may crowdsourcing marketplaces, such as
ODesk, where the worker who is asked a question may be controlled by the application.

�e state space is identical to the one described in Section 4.2.1, that is: S = (x1, y1, x2, y2, . . . , xr , yr)
However, the decision that is made at any state is now not restricted to “Pass”, “Fail” or “Continue”—

when continuing to process the item, we can choose to ask any one of the r workers (assuming they
haven’t been asked before). We have:

path(x1, y1, x2, y2, . . . , xr , yr) = path f ail(x1, y1, x2, y2, . . . , xr , yr)

+ pathpass(x1, y1, x2, y2, . . . , xr , yr)

+ ∑
1≤i≤r; x i=y i=0

pathiask(x1, y1, . . . , xi−1, yi−1, 0, 0, xi+1, yi+1, . . . , xr , yr)

where pathiask represents the path �ow based on asking the i th worker an additional question (if the
worker has not answered a question before). Moreover, we have:

path(x1, y1, x2, y2, . . . , xr , yr) =

∑
1≤i≤r; x i=1 or y i=1

pathiask(x1, y1, . . . , xi−1, yi−1, 0, 0, xi+1, yi+1, . . . , xr , yr)

where pathask is now replaced by pathiask , the path �ow on asking the ith human worker. We then
have:

�eorem 4.4.2 (PickingWorkers with Costs) We can �nd the optimal strategy for Problem 4.2.1 with
the ability of picking speci�c workers in O(m7rr logm).

Discussion: �is generalization su�ers from the same problem as the related generalization in Sec-

tion 4.2.1: when r is large, the complexity can be rather high, due to r being present in the exponent.
�erefore, the approach will not work if r is large.
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Furthermore, if the workers have di�erent (non-integral) costs, then our cost coordinate may be

rational rather than integral, as a result, we may need to discretize the rational numbers. Adding an

additional discretization would only make our solution more approximate.

4.4.5 Functionality Addition Generalization: Latency

So far, we have not considered latency as part of our optimization, focusing instead on cost and

accuracy. �e reason is the following: our latency is, in the wost case, as large as the time taken for

m questions to be answered in sequence. We ask one question on each item, and stop processing
for each item based on the strategy, and we do so for all items in parallel. �us, even in the worst

case, the latency is not very large. If latency is critical, we can add a constraint to our objective, in the

following manner.

We de�ne latency as the number of round-trips taken to the crowdsourcing marketplace; we

assume that multiple questions may be asked in parallel, and if asked in parallel, then would be all

answered in one unit of time.

�en, our state space can be represented as: S = (x1, y1, . . . , xr , yr , t), where t is the total number
of round-trips to the crowdsourcing marketplace taken so far in processing a given item.

We modify Problem 3.2.1 to the following by adding a constraint on the absolute number of

round-trips:

Problem 4.4.3 (Problem 4.2.1+Latency) Given an error threshold τ, a latency threshold per item t0,
and a budget threshold per item m, �nd a strategy that minimizes C under the constraint E < τ and ∀
reachable (x1, y1, . . . , xr , yr , t) ∑i[xi + yi] ≤ m, t ≤ t0.

At each state, the strategymay ask one, two, . . ., or t0 questions in parallel. �us, instead of having
one variable pathask , we have path1ask . . . path

t0
ask , corresponding to path �ow on asking 1, 2, . . . , t0

questions in parallel. Also, we have:

path(x1, y1, . . . , xr , yr , t) = path1ask(x1, y1, . . . , xr , yr , t) + . . . + patht0ask(x1, y1, . . . , xr , yr , t)
+ pathpass(x1, y1, . . . , xr , yr , t) + path f ail(x1, y1, . . . , xr , yr , t)

We then have:

�eorem 4.4.4 (Latency) We can �nd the optimal strategy for Problem 4.4.3 in O(m7rrt3.50 log(mt0)+
m2r t0).
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Note that in addition to an upperbound on latency, we can also capture constraints on expected

latency across items. For instance, we can enforce the constraint that the expected latency across all

items should be less than some number t′, or we can minimize expected latency, while enforcing
constraints on expected cost and expected error.

Latency is a lot more critical in Finding (Chapter 5), since in that case, latency can be as large as

the number of items. We will consider latency in greater depth in that chapter.

4.4.6 Functionality Addition Generalization: Scoring

So far, we have considered boolean �ltering, where an item either satis�es or does not satisfy a �lter.

We can also handle the case where each item can have one of k scores or ratings V = 1, . . . , u, with
accuracies or error rates:

Pr[wk ’s answer is j∣V = i] = p(i , j)(wk)

where p(i , j)(wk) is the probability that worker answers that the rating of an item is j when its actual
rating is i. �us, there is a set of u × (u − 1) numbers that de�ne the accuracy of a worker. (For each
i ∈ 1 . . . u, we need to know (u − 1) probability values corresponding to p(i , j) — the last probability
value can be inferred from the remaining u − 1.)

�en, at any point, we can represent the current set of answers using:

S = (x11 , x21 , . . . , xu1 , . . . , x1r , x2r , . . . , xur )

�at is, we record whether each worker has scored the item as 1, 2, . . . , u. Once again, the path �ow
property and linear programmingmay be leveraged to �nd the optimal strategy in the answer-record

representation.

Moreover, we can also handle error metrics that penalize di�erently for assigning i or i′, i ≠ i′

to an item whose actual rating is j. For instance, we may penalize i higher than i′ if i′ is closer to j
than i. �e function 0 ≤ pen(i , j) ≤ 1 refers to the penalty for judging an item with true value j, as i.
Now, E is set to be the following expression:

E = ∑
S

[ p1(S) × (∑
i ,i≠1

pen(i , 1) ⋅ ai(S)) + p2(S) × (∑
i ,i≠2

pen(i , 2) ⋅ ai(S)) + . . . +

pu(S) × ( ∑
i ,i≠u

pen(i , u) ⋅ ai(S)) ]

where ai is the probability that a score i is assigned to an item, and pi(S) is the probability that an
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item arrives at S with true score i.

4.5 Conclusions

In this chapter, we discussed a number of �ltering generalizations. We provided extensions of the

strategy computation techniques developed in the previous chapter that enable us to address all the

generalizations, but lead to intractability in the representation and computation of the strategy for

some generalizations. We then developed the posterior-based representation which does not su�er

from the intractability issue in the answer-record representation, but leads to strategies that may not

be optimal. We did, however, show that these strategies converge to optimal ones in the limit.

InChapter 9, we experimentally evaluate the techniques for distinctworker abilities in the context

of peer evaluation systems. �at is, we want to use distinct peer graders to score submissions on a

scale from 0—5.

In the next chapter, we consider crowd-powered �nding. So far, we have assumed that we want

to �lter all items. In �nding, we do not want to �lter all items, we just want to �nd a small number of
items that satisfy (or do not satisfy) the �lter.
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Chapter 5

Algorithm 2: Finding

5.1 Introduction

In this chapter, we develop algorithms for crowd-powered �nding1. �e basic version of the �nding

problem is the following: Given a (large) set of items and a number k, we want to use humans to �nd
k items that satisfy a given predicate or �lter.

�e �nding problem has several applications. As examples, a company may want to build a team

of 20 young Java programmers from a large set of pre-screened resumes, or a travel website may want

to identify 10 photos containing the Ei�el Tower from a dataset of 100,000 travel photos. Of course,

one could apply �ltering (Chapter 3 or 4), e.g., �nd all photos of Ei�el Tower in a set of 100,000

photos. But adapting �ltering would result in considering the entire set of 100,000 items, and hence

would be highly ine�cient when we only need a small number of items satisfying the predicate, e.g.,

only 10 Ei�el Tower photos are desired. �erefore, we focus our e�orts on identifying a small subset

of input items with desired properties, instead of �nding all items with desired properties.

Unlike �ltering, where we our primary focus was on optimizing cost for a �xed accuracy bound

(or vice versa), here, we focus on optimizing both cost and latency for a �xed accuracy bound. �e
reason is simple: in �ltering, since we need to �lter all items anyway, we do not save cost by �ltering

items in sequence, we might as well �lter all items in parallel. On the other hand, in �nding, we

de�nitely save cost by evaluating one item at a time (and stopping once we have enough items), while

incurring a higher latency.

�us, unlike the �ltering problem, the �nding problemhas an crucial cost-latency tradeo�which

1
�is chapter is adapted from our paper [168], written jointly with Anish Das Sarma, Hector Garcia-Molina, and Alon

Halevy, but some details and generalizations are omitted for the sake of clarity.
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this chapter studies in detail: At one end of the spectrum, there are solutions that require high mon-

etary cost, but the overall latency of solving the problem is low, while at the other end, there are

solutions that minimize cost but incur heavy latency. �e following example illustrates this tradeo�.

Example 5.1.1 Consider a data set I of images, from which we want to �nd 10 images that satisfy a
predicate or �lter f , e.g., whether it is a photo of a cat. We consider each image, and ask humans the
question, e.g., “does this image show a cat?”. Suppose on average that 20% of the photos are of cats. For
the purposes of this example, we assume that humans do not make mistakes while answering questions.

Since crowdsourcing marketplaces have high latencies, we consider algorithms where we ask (and
get answers to) many questions in parallel, and we do so over multiple “phases”, where in each phase
a number of questions are asked in parallel and answered together in one unit of time. Consider the
following algorithms:

1. Sequential: Pick one image at a time, ask a human if the image shows a cat (in one phase), and
then stop as soon as enough images satisfying f are gathered. �e expected number of questions
and phases for this algorithm is 10

0.2
= 50. Note that this algorithm is cost-optimal, i.e., it only

asks as many questions as strictly necessary.

2. Parallel: Ask all images in parallel in a single phase, incurring a heavy monetary cost depending
on n = ∣I∣. If n = 10000, the number of questions for this algorithm is 10000, while the number
of phases is 1.

3. Hybrid-1: Ask multiple images in the same phase, but no more than necessary: Ask 10 images
in parallel in the �rst phase, and if x1 images were found that satis�ed f , ask 10 − x1 in the next
phase, and if x2 were found in the second phase, ask 10 − x1 − x2 in the third and so on. In this
case, the expected number of phases for this algorithm is much smaller than 50, while the expected
number of questions is the same as the sequential algorithm.

4. Hybrid-2: A slight modi�cation of the algorithm above might ask more than 10 images in the �rst
phase, hoping to get all 10 images in the �rst phase, but without incurring much more cost than
necessary. For instance, we may ask 10

0.2
= 50 images in the �rst phase, with an expected number

of 10 images satisfying f . �e expected number of phases for this algorithm is less than Hybrid-1,
while the expected number of questions is larger.

As in Section 4.4.5, wemeasure time or latency by the number of phases of crowdsourcing we need to
perform, with one or more items asked in each phase, and measure cost (as in the previous chapter)

as the total number of questions asked.
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We provide algorithms for the �nding problem that are “optimal”, i.e., they lie along the skyline of
solutions of the cost-time tradeo�, and the balance between cost and time can be con�gured by the
application. In other words, we provide knobs that let application designers control the point along

the skyline that is desired.

We explore the cost-time tradeo� under two models of accuracy of human answers:

● Deterministic: In this setting, every human gives an accurate response to every question, which
is a reasonable assumption for properties that are easily evaluated by humans, e.g., whether a

resume mentions a date of birth before 1990. Recall that in the �ltering problem, the deter-

ministic setting was trivial — i.e., simply ask a human a question for every single item. Here,

the deterministic setting is non-trivial due to the cost-time tradeo�.

● Uncertain: In this setting, humansmay give erroneous responses, which is o�en amore realistic
assumption for properties thatmay be hard to evaluate, e.g. checking if a blurry photo contains

the Ei�el Tower.

5.1.1 Outline of Chapter

Here is the outline for this chapter:

● We study the cost-time tradeo� for the deterministic setting as follows: (Section 5.3)
● Given the cost-optimal sequential algorithm A, we �nd an algorithm A′ that asks the
same questions asA, but minimizes the number of phases of the algorithm. Essentially,
we �nd the best parallelizationA′ ofA.

● Given the cost-optimal sequential algorithm A, and an (additive or multiplicative) ap-
proximation bound α, we �nd an algorithmA′ that asks at most α more questions than
A for every input instance, but minimizes the number of phases of the algorithm. Essen-
tially, we can use this algorithm to �nd any optimal point in the cost-time tradeo�.

● We study the cost-time tradeo� when humans may give erroneous responses as follows: (Sec-
tion 5.4)

● We �nd a cost-optimal sequential algorithmA that minimizes cost. Unlike in the deter-
ministic setting, this algorithm is non-trivial.

● Given the sequential algorithmA, we �nd an algorithmA′ that asks the same questions
asA, but minimizes the number of phases of the algorithm.

● Given the sequential algorithmA and an approximation bound α, we present two algo-
rithms that ask at most α more questions than A, but have provable guarantees on the
number of phases.
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● We formally show that adaptations of �ltering for the uncertain setting are arbitrarily
worse in both cost and number of phases than our algorithms.

● We show that our techniques can be extended to the case when we desire bounds on expected
cost and expected number of phases. (Section 5.5)

5.2 De�nitions

We start by de�ning the �nding problem (Section 5.2.1), and then presenting ourmetrics for compar-

ing crowdsourcing solutions to each problem (Section 5.2.2). We then describe the formal problems

we address.

5.2.1 Setting

As in �ltering, we are given a (large) set of items I , ∣I∣ = n. Every input item either satis�es a given
boolean �lter f , or not. Our goal is to �nd k1 or more items that satisfy the �lter, and k0 or more
items that do not satisfy the �lter. (In many practical scenarios, one of k1 and k0 may be 0.) We can
also handle any general monotonic goals or output conditions based on one or more �lters [168] —

e.g., �nd k1 items that satisfy �lter1 OR (k0 items that satisfy the �lter1 AND k3 that don’t satisfy the
�lter2) — but we omit the details for ease of exposition. We state our goals more formally as part of

the problem description in Section 5.2.3.

For every item, wemay ask humans a question on that item: the humanmay answer YES if he/she

believes the item satis�es the �lter, and NO otherwise. A�er having asked humans a few questions

about a given item, the state of processing of an item I can be completely represented using the pair
(x , y). (We once again assume that all humans are able to answer the question with the same degree
of accuracy.) We de�ne the pair of an item along with its state of processing, i.e., (I, (x , y)) , x , y not
both 0, to be a partially evaluated item.
We assume we are given a �ltering strategy F from Chapter 3, that given a state (x , y), outputs

one of three responses F((x , y)) = Pass/Fail/Cont. We consider two scenarios of human error in
this chapter:

● Deterministic: In the deterministic setting, humans don’t make errors while answering ques-
tions. Here, F is the simple strategy that returns Pass a�er one YES answer is obtained, and
returns Fail a�er one NO answer is obtained, and Cont at (0, 0).

● Uncertain: In the uncertain setting, humans may make errors. Here, F may be one of the
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optimized �ltering strategies from Chapter 3. Our �nding algorithms are �ltering strategy-

agnostic, i.e., it can be used in conjunction with any �ltering strategy.

Finding Algorithms: A �nding algorithm, denoted A, is given a data set of items, also called an
input instance I and the output condition represented by a pair (k1, k0) (recall that the objective is
to �nd k1 items that satisfy the �lter, and k0 items that don’t). �e algorithm A maintains a state
of knowledge, which is the set of partially evaluated items SK = {Ii , (xi , yi)}. �at is, SK contains
the items, along with the state of processing for each item. As the algorithm asks more questions

to humans for each item, this information grows by either gathering new property information for

existing items (only necessary when human answers may be uncertain), or �nding out properties of

some new items.

A �nding algorithm proceeds in phases. In phase i, the algorithm performs the following opera-
tions:

● ItemSelection: (lines 1-6 inAlgorithm 1)�ealgorithmpicks amultiset of items to ask humans

questions for in phase i. �at is, algorithm A picks a multiset Q = {I j}, where I j ∈ I . If the
algorithm decides to ask a question for an item that has not been seen before, then a new item

is retrieved from the item database I .
● Human Questions: (lines 7-10 in Algorithm 1) �e algorithm in parallel asks di�erent hu-
mans questions on the items in Q. �e set of newly obtained answers is added to the state of
knowledge of the algorithm SK.

● Test for Solution: (lines 11-14 in Algorithm 1) If the state of knowledge satis�es the output

condition (k1, k0), i.e., it consists of k1 items for whichF(x , y) = Pass, and k0 items for which
F(x , y) = Fail, then the algorithm halts. Else, the algorithm moves on to the next phase.

An algorithm is said to return a correct solution if it �nds k1 items that satisfy the �lter (based on the
strategy F) and k0 items that don’t.
Naturally, the core logic of the �ltering algorithm rests in Line 1, wherein themultiset of questions

Q is selected. �at logic will be the focus of our chapter.
To enable us to compare the executions of various algorithms, wemake a few natural assumptions

on the execution of algorithms: (1) We assume that the order in which “new” items are retrieved by

the algorithms from I is identical. (2) For each item, di�erent algorithms receive the same answer
for each question. For instance, if one algorithm receives an answer a when a question on item I is
asked for the r’th time, then every algorithm would get the answer a for the r’th question on item I.
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Algorithm 1: Algorithm Outline

Data: k1 , k0 ,F
Result: SK, T , C
T ,C ← 0;
f l ag ← 0;
while f l ag == 0 do

1 Q← set of questions to ask in current phase;
2 H ← ∅;
3 for I ∈ Q do

4 if I /∈ SK then

5 I ← get new item from I ;
6 H ←H∪ {I};
7 askH in parallel using crowdsourcing service;
8 SK ← SK ∪ answers ofH;
9 T ← T + 1;
10 C ← C + ∣Q∣;
11 tmp1, tmp2← 0;
12 for (I i , (x i , y i)) ∈ SK do

13 if F(x i , y i) == Pass then
tmp1← tmp1 + 1;

if F(x i , y i) == Fail then
tmp0← tmp0 + 1;

14 if tmp0 ≥ k0 ∧ tmp1 ≥ k1 then
f l ag = 1;

5.2.2 Performance Metrics

We assume that each human question takes one unit of cost to answer, and that a batch of questions

being asked in parallel take one unit of time to be answered. �e performance of any algorithm as

described above can be expressed in terms of two quantities on a �xed input instance I.

• Latency T : �e total number of phases T of an algorithm is the latency of the algorithm. We
ignore any other computation time, such as testing whether the current set of items satis�es the

output condition, since that is an automated test that is negligible compared to human tasks.

Notice that we are implicitly assuming that all humans take around the same amount of time to

answer questions. While this assumptionmay not hold exactly in real scenarios, in practice, we

�nd that a bulk of the answers arrive at the same time, while a small number of answers arrive

much later; a common strategy, therefore, is to cancel the outstanding answers and then issue

a new batch of questions. Our algorithms also apply to the case where we cancel outstanding

answers.
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• Cost C: �e total monetary cost C is the number of human questions asked by the algorithm.
If xi is the number of human questions in the ith phase, then:

C =
i=T
∑
i=1

xi

Notice that we do not explicitly consider error E, because that is captured implicitly by our �ltering
strategy F . If the �ltering strategy F asks a lot of questions, then the error on each item will be low.

5.2.3 Optimization Problems

�is section describes the optimization problems addressed in the rest of this chapter; in all de�-

nitions below k1, k0 refer to the number of items needed to satisfy the output condition. First, we
describe the sequential problem, which is trivial for the case when humans do not make mistakes,

but non-trivial for the uncertain setting:

Problem 5.2.1 (Sequential) Given the output condition (k1, k0), design an algorithmA that asks one
question in each phase and returns the correct solution incurring the least monetary cost on each input
instance I.

Recall once again that a solution for a �nding problem identi�es k1 or more items that are inferred
to satisfy the predicate, and k0 or more items that are inferred to not satisfy the predict.
We de�ne the optimal cost on a certain input instance I , Copt(I) to be the cost taken by the

sequential algorithm on the data set (i.e., the solution to Problem 5.2.1).

�en, we have the following problem which leverages the maximum parallelism possible while

ensuring optimal cost on every input instance.

Problem 5.2.2 (Cost-optimal Max-parallel) Given (k1, k0), design an algorithmA that for every in-
put instance I

• AlgorithmA returns a correct solution and has C(I) = Copt(I)

• No other algorithmA′ (which for every I , returns a solution and has C(I) = Copt(I)) has lower
latency.

However, by trading o� some cost, we may be able to achieve better parallelism.

Problem 5.2.3 (α-multiplicative-approx. MP) Given (k1, k0), design an algorithm A such that for
every I :
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• AlgorithmA returns a correct solution and has C(I) ≤ αCopt(I)

• No other algorithm A′ (which for every I , returns a solution and has C(I) ≤ αCopt(I)) has
lower latency.

In other words, we provide an α-approximate cost on every input instance I , and increase parallelism
as much as possible. We can also de�ne the problem based on additive approximation.

Problem 5.2.4 (α-additive-approx. MP) Given (k1, k0), design an algorithm A such that for every
input instance I :

• AlgorithmA returns a correct solution and has C(I) ≤ α + Copt(I)

• No other algorithm A′ (which for every I , returns a solution and has C(I) ≤ αCopt(I)) has
lower latency.

�e problems described so far capture instance-speci�c guarantees, i.e., the goal is to design al-
gorithms that provide approximation guarantees per data set instance I , relative to the sequential
algorithm. Next, we describe a problem wherein the goal is to quantify expected monetary cost and
expected latency of algorithms. Note that while expected monetary cost and latency guarantees do
not translate to instance-speci�c guarantees—i.e., there may be algorithms whose expected costs and

latencies are low, but may do extremely poorly on some input instances—having expected cost and

latency guarantees allows us to compare algorithms relative to each other on the two dimensions of

cost and time.

Problem 5.2.5 (Expected Monetary Cost and Latency) Given a�nding algorithmA, �nd its expected
monetary cost and latency.

5.3 Deterministic Setting

�is section describes solutions to the problems de�ned in Section 5.2 when humans do not make

mistakes. Recall that the main logic of Algorithm 1 lies in Line 1, where the algorithm selects a set

of itemsQ to be asked questions in parallel, based on the current state of knowledge SK. Moreover,
since humans do not make mistakes, each itemmay be asked as part ofQ at most once. �us, we can
simply representQ using a single integer x, which signi�es the number of new items to be asked in
each phase.
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(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(0, 0)

(3, 0) (2, 1) (1, 2) (0, 3)

Figure 5.1: Possible states of the system on asking up to 3 questions.

When there is a single predicate with no errors in human answers, the state of execution SK can
be simply represented using a pair (a, b), where a is the number of items that have been veri�ed to
satisfy the �lter, and b is the number of items that have been veri�ed to not satisfy the �lter.

Example 5.3.1 Figure 5.1 depicts the reachable states on asking up to 3 questions whenwe have not asked
any questions yet (i.e., state (0, 0)). For the rest of this section, the output condition speci�es that two or
more items that satisfy the �lter are desired, i.e., k1 = 2, k0 = 0. �us, states (2, 0), (2, 1) and (3, 0) are
states that satisfy the output condition.

5.3.1 Problem 5.2.2: Optimal Cost

We�rst consider the problem ofminimizing phases, while keeping the cost the same as the sequential

algorithm. In our example, it is clear that 2 questions may be asked in the �rst phase since there are

no states when one question is asked that satisfy the output condition. Subsequently, if the resulting

state of knowledge a�er the answers are obtained is SK = (1, 1), only one question may be asked in
the next phase, while if the state is (0, 2), then two questions may be asked in the next phase.
We now describe an online algorithm, called OptCost, that solves Problem 5.2.2. �e algorithm

proceeds as follows: Let the current state of knowledge be (a, b). �en, in the next phase, the algo-
rithm asks xm + 1 questions where xm is the largest x such that:

∀i , j ≥ 0, 0 ≤ i + j ≤ x , (a + i < k1) ∨ (b + j < k0) = TRUE (5.1)

In otherwords, the algorithmasks precisely asmany questions in each phase until one of the reachable
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states is one for which the output condition is met.

We have the following theorem:

�eorem 5.3.2 Algorithm OptCost solves Problem 5.2.2.

Proof 5.3.3 We need to show that OptCost (a) has the same cost on every input instance as Copt (b)
uses as few phases as possible on every input instance. It is easy to see that (a) is true, since we do not at
any point ask more questions than necessary. For (b), we show that Algorithm OptCost, has lower cost
than any other algorithm that satis�es condition (a). Let one such algorithm be called Other.

We show that for any input, at any phase i, OptCost has asked more questions than Other. Since
our output condition is monotonic, this property will imply that OptCost reaches a termination state
in the same or fewer phases than Other, for every input instance.

We use induction. Consider the �rst phase. Algorithm OptCost asks xm + 1 questions. Any al-
gorithm asking greater than xm + 1 risks asking more questions than necessary. �us, at phase one,
OptCost has asked as many or more questions than Other. Assume that OptCost has asked more
questions than Other until phase i, with OptCost having asked y questions, while Other has asked
y′ ≤ y questions in total. Now, assume that Other has asked more questions in total than OptCost

at phase i + 1, i.e., OptCost has asked z questions, while Other has asked z′ > z questions in total.
Moreover, by de�nition of Equation 5.1, starting from the state corresponding to y questions, there is a
state corresponding to z questions in total that satis�es the output condition. Now, since Other begins
at y′ ≤ y, there is an input instance where z − y′ additional questions in total are necessary to get to the
terminating state, but Other asks z′ − y′, which is more than necessary. Hence proved.

5.3.2 Problem 5.2.3: Multiplicative Approximation

�e algorithm, called α-MultApprox, proceeds as follows: Let the current state of knowledge SK
be (a, b), and the number of questions asked so far be y = a + b. �en, the algorithm asks α × (y +
xm + 1) − y questions in the next phase, where xm is as de�ned in Section 5.3.1. �us, the algorithm
asks up to (α − 1)(y + xm + 1) additional questions beyond what OptCost asks.
Consider our example with α = 2. Consider the case when the resulting state of knowledge a�er

the �rst phase is (1, 3). (�us, y = 1+ 3 = 4.) In this case, on asking one question, we can reach a state
for which the output condition is satis�ed (2, 3) – thus OptCost will ask one question. However,
α-MultApprox will ask α(y + xm + 1) − y= α(4 + 1) − 4 = 6 questions in parallel in the next phase.
We have the following theorem:

�eorem 5.3.4 Algorithm α-MultApprox solves Problem 5.2.3.
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Proof 5.3.5 We need to show that the algorithm (a) has less than α × Copt on every input instance (b)
uses as few phases as possible. First, we show that (a) is true. Notice that at any state, we only ask
α × (y + xm + 1) − y where (xm + 1) is questions necessary to get to the closest reachable state that
satis�es the output condition. Note also that from any state, the only reachable terminating states are
those where (xm + 1) or more questions are used (by de�nition of xm). For all those terminating states,
the total cost is greater than or equal to y+xm+1. Since α-MultApprox asks at most α×(y+xm+1)− y
and since the current state has y questions asked already, α-MultApprox asks α × (y + xm + 1), which
is less than or equal to α × Copt for every terminating state. �us, (a) is true.

For (b), we show that Algorithm α-MultApprox, at any phase, has asked as many or more more
questions than any other algorithm, called Other, that satis�es (a). As in the previous proof, this implies
that the algorithm will terminate sooner.

We use induction for the proof. Consider the �rst phase. Algorithm α-MultApprox asks α(xm+1).
Any algorithm that asks more questions risks asking more questions than necessary, since there exists
a terminating state with xm + 1 cost, thus, asking > α(xm + 1) will not satisfy (a). Now assume that
α-MultApprox has asked asmany ormore questions than Other until phase i, where α-MultApprox
has asked y questions in total, while Other has asked (say) y′ ≤ y questions in total. Now, let Other
have asked more questions than α-MultApprox at the end of phase i + 1, i.e., α-MultApprox has
asked z questions, while Other has asked z′ > z questions in total. �en, notice that from the state
corresponding to y questions that α-MultApprox is currently at, in phase i+1, there is an input instance
for which xm + 1 questions results in a termination state, and z = α × (xm + y + 1). �is same state
is reachable from the state that Other is at, corresponding to y′ questions. For this input instance,
corresponding to Copt = xm + y + 1, Other asks a total of z′ questions, where z′ > z = α × Copt . �us,
Other violates (a). Hence proved.

5.3.3 Problem 5.2.4: Additive Approximation

�e algorithm, called α-AddApprox, proceeds as follows: Let the current state of knowledge be
(a, b), and the current phase be y. �en, the algorithm asks xm + α + 1 questions corresponding
to the largest xm satisfying equation 5.1. �us, the algorithm asks up to α additional questions be-
yond what OptCost asks.

We have the following theorem, whose proof is similar to that of �eorem 5.3.4:

�eorem 5.3.6 Algorithm α-AddApprox solves Problem 5.2.4.
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5.3.4 Discussion

�e previous subsections gave us optimal online algorithms for the deterministic variant of the �nd-

ing problem, given α, and whether we would like to use additive or multiplicative approximations.
For a given value of α, the additive approximation algorithm uses the same “aggressiveness”, i.e., it
asks up to α additional questions in a given phase, independendent of howmany questions have been
asked so far. On the other hand, the multiplicative approximation algorithm becomes progressively

more aggressive as more questions are asked. For instance, for α = 2, if 3 questions are required to
satisfy the output condition, themultiplicative algorithm asks up to 6 questions, but if 1000 questions

are required to satisfy the output condition, the algorithm may ask up to 2000 questions.

An important hallmark of our algorithms is that as long as the output condition is not satis�ed,

wemay switch from an additive to amultiplicative approximation or vice-versa. For instance, wemay

employ multiplicative approximation until a certain phase, and then switch to an additive approxi-

mation (thereby allowing the user of the algorithm to force the algorithm to be more conservative.)

�e reason why switching is possible is that we do not really “commit” to a speci�c approximation

until the last phase when the output condition is eventually met. Until that phase, any questions used

count towards satisfying the output condition, rather than being extra questions over and above the

optimal number of questions. However, note that we may no longer have latency guarantees if we

switch between strategies. �e only guarantee we have is that the latency would be at most the sum

of the latencies if we used only additive approximations, and if we used only multiplicative approxi-

mations.

5.4 Uncertain Human Answers

�is section considers the case in which humans may make errors. We formally de�ne the uncer-

tainty setting in Section 5.4.1. Under the uncertainty model, even the best sequential algorithm is not

obvious; we introduce the main sequential algorithm in Section 5.4.2. We also consider �nding only

Pass items in Section 5.4.2 (or only Fail items). We also show that adaptations of �ltering to �nding

are arbitrarily worse than our algorithms. We present a brief description of extending to the case

when we desire both Pass and Fail items in Section 5.4.3.
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5.4.1 Model of Uncertainty

Setting: In the uncertain setting, as before, we have a single predicate or �lter f , and each item may
ormay not satisfy f . In this case, however, on being asked a question on an item, the human response
may not always be correct. As in Chapter 3, we assume that we know the selectivity s of f , as well as
the error rates of the humans e0, e1, i.e., the false positive and false negative error rates of individual
human responses (using prior history or by sampling a few items).

With each item receiving a set of x YES and y NO responses, we use a strategyF (as described in
Chapter 3) to infer the Pass/Fail value for each item based on the set of human responses (x , y). Un-
like in the deterministic setting, the strategy F may require x and y to both be greater than 1. Chap-
ter 3 described many strategies (and algorithms to �nd optimal strategies) for inferring Pass/Failfor

each item, and our techniques apply to all strategies. It remains to be seen if we can get signi�cant

improvements on using generalized �ltering strategies from Chapter 3.

Our output condition is, as before, speci�ed by a pair (k1, k0): Given a set I of items, our goal is
to �nd I1, I0 ⊆ I such that: (1) all items in I1 are inferred to bePass items, all items in I0 are inferred
to be Fail items (based on a chosen strategy); (2) ∣I1∣ ≥ k1, ∣I0∣ ≥ k0.

�e key ideas of our algorithms are best presented by assuming k0 = 0; i.e., assuming we are
only looking for Pass items. So for most of the rest of the section we assume k0 = 0, and consider
extension to k0 > 0 in Section 5.4.3. Additionally, to begin with, we make the assumption that the
number of items n = ∣I∣ is large (in comparison with k0 or k1); our algorithms generalize to the case
when there is a bounded set of items. We describe this generalization in Section 5.4.5.

Expected Cost Computation: Given a set of x YES responses and y NO responses on an item I,
we de�ne Cnext(x , y) to be the expected cost to �nding the next item that satis�es the predicate; i.e.,
Cnext(x , y) includes two cases:

• Item I becomes a Pass item: Let the probability of this event be PR1. In this case, we want
the expected number of questions required to declare I to be a Pass item; let this number of
questions be denoted N1.

• Item I becomes worse than pursuing a new item: Let the probability of this event be PR2.
In this case, we want Cnext(0, 0) plus the the number of questions required to make the cost
higher than Cnext(0, 0). Let the number of questions required to make the cost higher than
Cnext(0, 0) be denoted N2.

�e following expression combines the two cases above for Cnext(x , y):
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Cnext(x , y) = PR1 × N1 + PR2 × (Cnext(0, 0) + N2)

Given a strategy, we describe how to computeCnext for each grid point in the strategy in Section 5.4.4.

Algorithm 2: Algorithm OptSeq, a cost-optimal sequential algorithm for the (k1, 0) uncer-
tainty problem.

Data: I , k1 , s, e0 , e1, strategy F
Result: Set L of k1 Pass items
L ← ∅;
U ← I ;
Compute Cnex t for each point in the strategy F ;
while ∣L∣ < k1 do
Pick I j ∈ U with lowest Cnex t(x j , y j);
Ask a question on I j to the crowdsourcing service;
Add answer to (x j , y j);
if F(x j , y j) = Pass then
Remove I from U and add it to L;

if F(x j , y j) = Fail then
Remove I from U ;

5.4.2 Algorithms for k0 = 0
We start by studying the case where we are only required to �nd k1 Pass items, and k0 = 0 Fail items;
the converse case of k1 = 0 is solved identically.

Problem 5.2.1: Sequential Algorithm

Consider the simple cost-optimal algorithm OptSeq shown in Algorithm 2 for any strategy. As the

�rst step, we precompute Cnext(x , y) for each reachable point in the strategy. �e algorithm simply
picks an “undecided” item I j (from set U) with the lowest cost Cnext(R(I)) at each phase and asks
a human a question on that item. We may maintain a priority queue of unprocessed items and their

cost, in order to pick the best candidate at each phase. Notice that all items have the same value

Cnext(0, 0) to begin with, so we only need to sort the Cnext values of the items for which at least one

question has been asked, rather than all items in U . Whenever an item is inferred to be a Pass or a
Fail (according to the strategy F), it is removed from consideration (i.e., removed from set U).
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Algorithm 3:Algorithm UncOptCost, a cost-optimal, phase-optimal algorithm for the (k1, 0)
uncertainty problem.

Data: I , k1 , s, e0 , e1, strategy F
Result: Set L of k1 Pass items
L ← ∅;
U = I ;
Compute Cnex t for each point in the strategy F ;
while ∣L∣ < k1 do
Pick I ′ ⊆ U , ∣I ′∣ = (k1 − ∣L∣) items with the lowest Cnex t(x , y);
Q← {};
for each I j ∈ I ′ do
Let a be the fewest YES responses required to make Cnex t(x j + a, y j) = 0;
Let b be the fewest NO responses required to make Cnex t(x j , y j + b) = Cnex t(0, 0);
Add min{a, b} questions on I j toQ;

AskQ in parallel to the crowdsourcing service;
Update (x j , y j) for each I j ∈ Q based on answers;
for each I j ∈ Q do

if F(x j , y j) = Pass then
Remove I j from U and add it to L;

if F(x j , y j) = Fail then
Remove I j from U ;

Problem 5.2.2: Min-Cost Phase Optimal (α = 1)

Next, we present a cost-optimal and phase-optimal algorithm UncOptCost, which uses an idea sim-

ilar to Algorithm 2, but combines as many questions into a phase as will be de�nitely asked in Algo-

rithm 2. (�is enables us to give the guarantee of low number of phases while keeping the cost the

same as Algorithm 2.) �e pseudocode of UncOptCost is presented in Algorithm 3. Intuitively, the

algorithm asks questions on at most k1 items in each phase; these are the items with the lowest ex-
pected cost of aPass decision based on the current number of YES andNO responses. To ensure that

no unnecessary question is asked on any of these items, we ask the minimum number of questions

that may: (a) either have the strategy F con�rm the item as a Pass item, or (b) reduce the expected
cost Cnext(x , y) below the next highest item, removing it from the set of top items being considered.
Based on the criteria for the set of items and number of questions asked at each phase, we can show

that UncOptCost is a min-cost phase-optimal algorithm.

�eorem 5.4.1 • UncOptCost asks all and only questions asked byOptSeq. �erefore, UncOptCost
is a min-cost solution to the (k1, 0) uncertainty problem.
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• UncOptCost is phase-optimal.

Proof 5.4.2 (Sketch) For any algorithm that asks more questions than UncOptCost at any phase, it is
easy to construct an input for which that algorithm asks strictly more questions than OptSeq. 2

Problem 5.2.3: α-cost approximation (α > 1)

Next we consider α-multiplicative cost approximate algorithms. For any α > 1, intuitively we are
allowed to ask more questions in each phase than asked by UncOptCost. Broadly there are two ways

to increase the number of questions we ask: We could expand the set of items and ask a similar

number of questions on each item, or we could ask more questions on the set of items asked by

UncOptCost. In the following, we consider both these approaches to asking more questions. For

ease of presentation, we shall assume that α is an integer. In practice, all our algorithms can be
extended to non-integer α; a trivial (and non-optimal) way to do this is by simply considering ⌊α⌋.
Further, our ideas may be adapted for α-additive cost approximations, but details are omitted from
this study.

Expand Set of Items Considered: We present Algorithm α-Expand, which is an α-cost approxi-
mate algorithm for the (k1, 0) uncertainty problem: Given an α > 1, α-Expand runs α simultaneous
instances of UncOptCost as follows. �e �rst instance, a “master instance”, of UncOptCost proceeds

identically to the α = 1 case, except that it keeps track of the total number ofPass items that have been
found across all simultaneous instances of the algorithm. �erefore, every instance stops as soon as

a total of k1 Pass items have been found. Simultaneously, we have a set of (α − 1) “slave instances”
that mimic the master instance: Each slave instance maintains a running set of items on which to

ask questions at each stage. �e total number of items asked in each stage is identical to the master

instance, and there is a one-to-one correspondence in these sets of items: If the master instance asks

ai questions on the i’th item, even the slave instance asks exactly ai items on the i’th item. At the end
of each phase, the total number of Pass and Fail items are computed, and removed from the working

set of items.

Our next theorem summarizes the result of the α-Expand algorithm. Intuitively, the guarantee
that we aim to get is that each of the instances contribute k1

α Pass items. If we were to run the slave

instances independent of the master, this will allow us to get to k1 Pass items in the same number
of phases it takes for one slave to get k1

α Pass items. However, since the slaves mimic the master

exactly (in order to ensure that the algorithm is a α-multiplicative cost approximation), we multiply
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the number of phases by a “delaying factor”, as can be seen in the following.

�eorem 5.4.3 Assuming an in�nite set of input items, where each item is drawn independently and
uniformly at random from some distribution, let the expected number of phases required by Algorithm
UncOptCost to �nd k1 items by ETopt(k1), and let the expected number of phases required by Algo-
rithm α-Expand be ETα−Expand(k1). Suppose amax is the maximum number of questions asked on any
slave instance in one phase, and amin is the minimum number of questions asked in any phase in the
master instance, we have:

• α-Expand is an α-multiplicative cost approximation.

• ETα−Expand(k1) ≤ min{
amaxETopt( k1

α )
amin , ETopt(k1)}

Proof 5.4.4 Since α-Expand maintains a one-to-one correspondence between the set of items in the
master instance, and items in each slave instance, the total number of questions asked is α times the
number of questions asked in the master instance. Since the master instance mimics UncOptCost, we
have that α-Expand is an α-multiplicative approximation.

Let the random variable denoting the number of items obtained by α-Expand a�er T phases be
Xα(T). α-Expand runs α copies of UncOptCost, and let the random variable denoting number of
items obtained by each of these instances be Xi(T), i = 1..α. We have:

Xα(T) =
α
∑
i=1

Xi(T)

�erefore:

E[Xα(T)] = E[
α
∑
i=1

Xi(T)] =
α
∑
i=1

E[Xi(T)]

Let us set T = ETopt( k1
α ). Further, since each slave phase runs exactly the same number of questions as

the master, for each item, each slave may require up to a multiplicative factor of amax

amin more questions.
�erefore, we have that:

E[Xα(
amax

amin ETopt(
k1
α
))] ≥

α
∑
i=1

E[Xi(ETopt(
k1
α
))]

=
α
∑
i=1

k1
α
= k1 = E[Xα(ETα−Expand(k1))]

⇒ ETα−Expand(k1) ≤
amax

amin ETopt(
k1
α
)
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2

Multiply Number of Questions: Our next approach, Algorithm α-Multiply proceeds by asking
questions on exactly the same set of items as UncOptCost, but asking α-times as many questions
on each item. If UncOptCost asked ai questions in the i’th phase on a particular item I, then
α-Multiply asks α × ai questions on I in the same phase. (Note that UncOptCost picks at most
k1 items based on probability order at the beginning of each phase; the ordering of items may be
di�erent for α-Multiply, but we still pick exactly the same set of items as UncOptCost to ensure
α-cost approximation.)
Intuitively, our guarantee states that we may speed up the processing of items by a factor of α,

while processing items in the same order. Once again, we need to add a “delaying factor” to account

for the fact that we may end up asking extra unnecessary questions.

�eorem 5.4.5 Given an input set I of items, and k1, let Topt be the number of phases required by
UncOptCost; further, for each output item Ii (i = 1..k1), let amax and amin be the maximum and
minimum number of questions asked by UncOptCost in any phase. Let ρ = min{maxi=1..k1

amax
i
amin
i
, α}.

We have that:

• α-Multiply is an α-multiplicative cost approximation.

• α-Multiply takes at most ρTopt
α + amax

amin phases to solve the (k1, 0) problem on I .

Proof 5.4.6 Since each phase of α-Multiply asks at most α times as many questions as UncOptCost,
the algorithm is an α-multiplicative approximation.

Let T be the number of phases taken by α-Multiply. Let Topt(i) be the number of phases for which
Ii is active in UncOptCost, and let T(i) be the number of phases Ii is active in α-Multiply. For each
item Ii , UncOptCost asks at most amax

i Topt(i) questions, and α-Multiply asks at least αT(i)amin
i

questions.
Since the total number of questions required to resolve each item is independent of the speci�c al-

gorithm, we have that the number of questions asked by α-Multiply is at most αamax
i more than that

asked by the sequential algorithm. �erefore, we have that

αT(i)amin
i ≤ amax

i Topt(i) + αamax
i .
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�erefore,

T(i) ≤ ρTopt(i)
α

+ amax
i
amin
i
.

Since this holds for each item Ii , we have: T ≤ ρTopt
α + amax

amin

Comparison with Filtering

Next, we formally show that adaptations of �ltering algorithms (as discussed in Chapter 3) to the

�nding problem have provably (a) much higher cost (b) much higher latency than the �nding al-

gorithms. For simplicity, we consider the case in which the output condition requires just k1 items
satisfying the predicate. Our discussion also applies to the general (k1, k0) variant.
One obvious way of adapting �ltering to �nding is to �lter all ∣I∣ = n items simultaneously;

naturally, this algorithm has arbitrarily high O(n) cost compared to our algorithms, all of which use
cost proportional to O(k1/s), independent of n.

�e other way of using �ltering for our problem is to �lter in sequence; asking questions on one

item until it is resolved to be a Pass or a Fail. Once an item is resolved, we operate on the next item,

and so on, until k1 items are resolved to Pass, thereby satisfying the output condition. We call this
algorithm OptSeqFilter.

We �rst present a comparison of our sequential algorithm OptSeq with the sequential �ltering

algorithm OptSeqFilter. Note that the key di�erence between OptSeq and OptSeqFilter is that

OptSeq may abandon an item even before it is resolved to a Fail or Pass (if there is another item

with a better chance of being resolved to Pass, at a lower cost) — while the �ltering algorithm al-

ways continues �ltering until we resolve to a Fail or Pass. �e following result establishes that: (1)

�e expected cost of OptSeqFilter is at least as much as OptSeq, (2) OptSeqFilter may incur

arbitrarily higher cost compared to OptSeq.

Lemma 5.4.7 ● Given a set of items I , k1, and a �ltering strategy F , the expected cost of �nd-
ing a solution using OptSeq is at most as much as the expected cost of �nding a solution using
OptSeqFilter.
● Given any a > 0, we can construct a �nding problem instance such that the expected cost of
�nding a solution with OptSeqFilter is Ω(a) and that of �nding a solution with OptSeq is
O(1).

Proof 5.4.8 �e proof of the �rst statement directly follows from the fact that OptSeq always picks
an item with minimum expected cost to satisfy a predicate (recall the de�nition of Cnext(x , y) from
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Section 5.4.1).
We prove the second statement by constructing an input instance onwhich we canmake the expected

cost of OptSeqFilter to be Ω(a), for any parameter a, but the expected cost of OptSeq is O(1).
Consider constructing the (k1 = 1, k0 = 0) problem over a set of two items I1, I2, with I1 being a Pass

item and I2 being a Fail item. An instance of the problem orders items randomly, so either I1 may be
presented �rst, or I2. Further, suppose that whenever a question is asked on a Fail item, a human always
returns NO. And whenever a question is asked on a Pass item, with very high likelihood we get YES,
but with a non-zero probability we get NO. Based on this, consider the strategy F where an item is
declared to be Pass as soon as it gets one YES response, but an item is declared to be Fail only when the
number of NO responses exceeds the number of YES responses by M. �e expected cost of solving this
input instance using OptSeq isO(1) since with probability half I1 will be picked, which has an expected
cost of O(1) before a YES response is obtained. (Even if I2 is �rst in the order, OptSeq will switch to
I1 whenever the number of NO responses is more for I2, still resulting in an O(1) expected cost.) On
the other hand, for OptSeqFilter, with probability half I2 will be �rst in the order, in which case the
expected cost is at least a, therefore the expected cost of OptSeqFilter over the two possible orderings
is also Ω(a).

�eprevious lemma demonstrates that OptSeqFilter can havemuch higher expected cost than

the cost optimal algorithm OptSeq. We next show how OptSeqFilter can have much higher ex-

pected latency aswell as expected cost than our phase-optimal and cost-optimal algorithmUncOptSeq.

Basically, the lemma states that our method of parallelizing as much as possible while retaining the

same cost can result in signi�cant gains in latency.

Lemma 5.4.9 ● Given a set of items I , k1, and a �ltering strategyF , the expected cost and latency
of �nding a solution using UncOptCost is at most as much as the expected cost and latency of
�nding a solution using OptSeqFilter.
● We can construct a �nding problem with input instance such that the expected latency of �nding
a solution with OptSeqFilter is Ω(k1), and that of �nding a solution with UncOptCost is
O(1).

Proof 5.4.10 �e �rst statement follows directly from the fact that UncOptCost asks precisely as many
questions as OptCost, and OptSeqFilter has higher cost than OptCost (as seen from Lemma 5.4.7).
Moreover, OptSeqFilter examines items one at a time, resulting in a higher latency thanUncOptCost,
which parallelizes questions as much as possible.
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We prove the second statement by constructing an instance of the problem onwhich we canmake the
expected latency of UncOptCost be O(1). We use the majority strategy where one question determines
whether or not the item satis�es the �lter, and we set s to be arbitrarily high. In this case, UncOptCost
will ask k1 items one question in one phase, and with high probability, will �nd k1 items satisfying the
predicate. On the other hand, OptSeqFilter will take at least Ω(k1) to �nd k1 items satisfying the
predicate.

5.4.3 Pass and Fail Items

So far we only considered algorithms where the goal is to �nd k1 Pass items and zero Fail items.
We show that for the general (k1, k0) problem of �nding k1 Pass items and k0 Fail items, there is a
simple 2-approximation algorithm in the number of phases. ConsiderAlgorithm 2Step that operates

as follows: (1) In the �rst step it solves the (k1, 0) problem using techniques destribed above, (2) In
the second step it solves the (0, k0) problem, again using techniques described above, then combines
the items obtained. It can be seen easily that 2Step is a 2-approximation to the latency of an optimal

α-approximation algorithmA∗.

Lemma 5.4.11 We are given an input instance I for the (k1, k0) problem, and input α denoting the
required cost-approximation. Let A∗ be an optimal α-cost multiplicative approximation algorithm for
an output condition that can be expressed as (k1, k0). We have that 2Step that applies the optimal
α-cost approximation techniques on (k1, 0) and (0, k0) problems respectively is a 2-approximation of
A∗.

Proof 5.4.12 Let T(A) be the number of phases required by algorithmA. Let the two stages of 2Step
be A and A. Since A and A are phase-optimal for the (k1, 0) and (0, k0) problems respectively, we
have that:

T(A∗(k1, k0)) ≥ T(A∗(k1, 0)) ≥ T(A1(k1, 0))

T(A∗(k1, k0)) ≥ T(A∗(0, k0)) ≥ T(A2(0, k0))

Adding the two equations gives our result:

T(2Step(k1, k0)) = T(A1(k1, 0)) + T(A2(0, k0)) ≤ 2T(A∗(k1, k0))

Note that the 2-approximation above applies to either a min-cost phase optimal algorithm A∗, or
to any α-cost phase optimal algorithm. E�ectively, given any algorithm A∗, we have that 2Step
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achieves the same result asA∗ in at most twice the cost.

5.4.4 Cost Computation

We now discuss how to compute the expected cost Cnext(x , y) given a strategy. As in Chapter 3, a
strategy can be represented as a closed region in the X-Y plane, i.e., there is a certain value m such
that no item ever reaches x + y = m (where x, y are the number of YES/NO answers from humans)
during processing. Note that for most commonly used strategies, even a very small m (say m = 5)
will su�ce.

Given a strategy, there is a recursive dynamic programming algorithm that computes Cnext(x , y)
for all points within the strategy, starting at the boundary of the strategy, and proceeding towards

(0, 0). Consider a point (x , y). Let the probability of getting a YES answer at (x , y) be pYES(x , y)
and the probability of getting a negative answer at (x , y) be pNO(x , y). We have:

pNO(x , y) = Pr(V = 1∣(x , y)) × Pr(NO∣V = 1) + Pr(V = 0∣(x , y)) × Pr(NO∣V = 0),

where V = 0/1 is a random variable indicating whether the item satis�es the predicate/�lter or not.
(�ere is a similar expression for pYES(x , y).) �ese expressions do not depend on the strategy, but
instead depend on x and y, the selectivity of the predicate, and the error rates of human workers
which depend on the item being V = 0/1.
At each point (x , y), we either have the option of starting afresh (i.e., starting with a new item), or

proceeding with the current item by asking an additional question. If we ask an additional question

and end up at (x , y + 1), then our expected cost from that point on is Cnext(x , y + 1), while if we end
up at (x + 1, y), our expected cost from that point on is Cnext(x + 1, y). We have the following:

Cnext(x , y) = min
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cnext(0, 0)

pYES(x , y)Cnext(x + 1, y) + pNO(x , y)Cnext(x , y + 1) + 1

If the �rst case is used, then we return to (0, 0) (and start with a new item) if we reach (x , y), and
in the second case, we ask an additional question. Our corner cases are the following: At all points

of the strategy (x , y) where Fail is returned, we set Cnext(x , y) = Cnext(0, 0), while at all points of
the strategy (x , y) at which Pass is returned, we set Cnext(x , y) = 0. To compute Cnext(x , y) for
any pair of values x , y, we recursively unfold the equation above, until the base case of (0, 0). Note,
however, that the value of Cnext(0, 0) is unknown, thus the expression keeps increasing in size as we
move towards the origin. More precisely, the size of the expression could be as large as the number
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of points in the strategy (or exponential in m).
However, wemay use the following theorem to guide our search for the right value ofCnext(0, 0):

�eorem 5.4.13 �evalues of Cnext(x , y) for all x , y (not both0)monotonically decreases as Cnext(0, 0)
decreases. Furthermore, if we substitute α for Cnext(0, 0) and compute Cnext(x , y) for all points (x , y)
(not both 0), then Cnext(0, 0) ≥ α i�

α ≤ pYES(0, 0)Cnext(1, 0) + pNO(0, 0)Cnext(0, 1) + 1

(and vice versa.)

�us, our approximate decision procedure is the following: We use a binary search for α between 0
and m. We start with a value of Cnext(0, 0) = α, and use the equations above to compute the values
of Cnext(x , y) for all points where x , y are not both zero, then compare α and pYES(0, 0)Cnext(1, 0)+
pNO(0, 0)Cnext(0, 1) + 1. If α is larger, then Cnext(0, 0) < α (and so α must be reduced), while if α
is smaller, then Cnext(0, 0) > α (thus α must be increased.) We stop when Cnext(0, 0) ≈ α. Each
iteration of the search procedure would take O(m2).

5.4.5 Discussion

So far, we assumed that I has an in�nite number of items. Our algorithms continue to have the same
worst-case guarantees as the in�nite case, when I has a bounded number of items, as long as we can
satisfy the output condition without examining all items (which is certainly true when ∣I∣ is much
larger than k1 or k0.)
Once we end up examining all items, then our main issue is in the cost computation, where

Cnext(0, 0) is no longer the expected cost of a new item satisfying the predicate. (Speci�cally,Cnext(0, 0)
will be larger, and as a result, Cnext values for all items will increase.) We run our algorithms as be-

fore until we examine all items. At that point, we set Cnext(0, 0) to be∞, and recompute Cnext(x , y).
(�is recomputation has the e�ect of setting Cnext for each item to be the cost of con�rming that item

to be a Pass or a Fail item.) �en, we continue execution of our algorithms. While approximate, this

approach provides a practical solution when we end up examining all items.

In this section, we developed two approximation algorithms (one with expanding the set of items

under consideration α-Expand, and one with a look-ahead for the same set of items α-Multiply).
One could envision designing a hybrid algorithm that does both expansion as well as lookahead;
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we leave deriving bounds on performance of such an algorithm as future work. However, we may

certainly use the worst case bounds of the two algorithms to select, for a given �nding problem, the

algorithm which has better bounds and therefore will perform better.

Lastly, while we considered multiplicative approximation in this section, one could imagine an

analog of the α-Multiply algorithm for additive approximation. We omit details of the derivation
of performance bounds for such an algorithm.

5.5 Problem 5: Expected Cost and Latency

In this chapter, so far, we focused on problems that provide instance-speci�c guarantees, i.e., we de-
signed algorithms with approximation guarantees for each instance, relative to the sequential algo-
rithm for the same input instance. In this section, we derive expected cost and latency across all input
instances, for the algorithms that we devised. Deriving such guarantees will enable us to directly

compare algorithms on cost and time.

We make two simplifying assumptions in this section: we assume that our output condition asks

for k1 items that satisfy the �lter, and that humans do not make mistakes.
We begin by introducing some notation: To distinguish the expected cost and latency from the

instance-speci�c cost and latency, we denote the expected monetary cost of an algorithm as EC and
the expected latency or expected time as ET . As before n denotes the total number of items ∣I∣. Next
we analyze EC and ET of completely sequential, completely parallel, and intermediate algorithms.

Sequential and Parallel Extremes: As in Section 5.3, in the sequential case, we can ask one question

at a time, and stop once we have k1 items satisfying the predicate. �is approach has EC = ET = k1
s

(recall that s is the selectivity of the �lter), since we examine k1/s items before we �nd k1 that satisfy
the predicate.

�e straightforward parallel algorithm that asks all items in a single phase is guaranteed to �nd

k1 items that satisfy the predicate. �is approach has EC = n, ET = 1.

Intermediate Solutions: We may now design algorithms to “parallelize” the sequential algorithm

and potentially speed it up. For instance, we simply ask k1 questions in the �rst phase, ask only as
many as necessary in the second phase (i.e., only as many items as strictly necessary to satisfy the

output condition), and so on. To analyze algorithms of this type, let us �rst assume that when we ask

questions, we get precisely what we expect. Subsequently, we will show how to ensure that with high

probability we get what we expect.



www.manaraa.com

CHAPTER 5. ALGORITHM 2: FINDING 102

In this setting, if we ask k1 questions in the �rst phase, the number of items that satisfy the pred-
icate would be precisely sk1. �en, we may ask k1 − sk1 in the next phase, and we get s(k1 − sk1) items
that satisfy the predicate in the second phase. In the ith phase, generalizing this computation, it can
be shown that we ask k1(1 − s)i−1 questions. We would like this number to be < 1, which guarantees
that we have found enough items. �at is,

i > 1 − log k1
log(1 − s)

Moreover, the total number of questions asked can be computed as follows:

j=i
∑
j=1

k1(1 − s) j−1 = k1
1 − (1 − s)i

s

We can generalize the algorithm above by asking α times the remaining number of items required
at each phase. �at is, we begin by asking αk1 questions, then, if k′1 ≤ k1 items are still to be found
by the second phase, we ask αk′1, and so on. Using similar ideas to the computation in the previous
algorithm, we have:

i > 1 − log(αk1)
log(1 − αs)

Moreover, the total number of questions asked can be computed as follows:

j=i
∑
j=1

αk1(1 − αs) j−1 = k1
1 − (1 − αs)i

s

However, note that in a given phase, we may not exactly obtain the number of items that we expect

to satisfy the predicate. To ensure that with high probability we get at least the number of items that
we expect in each round, we scale up the number of questions asked at each phase by a factor β, and
we are guaranteed to get expected monetary cost and latency lower than those computed above:

ET ≤ 2 − log(αk1)
log(1 − αs) EC ≤ βk1

1 − (1 − αs)i
s

�e following theorem formalizes this result.

�eorem 5.5.1 Given the set I of items, each with an independent probability s of satisfying the input
predicate, and a required number k1 of items to be found, the parallel algorithm of asking βαki items
in the ith phase (α ≤ 1/s), where ki is the remaining number of items to be found has the following
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guarantees with β = ⌈2 + a2(1−s)
k1 ⌉:

Pr(C ≥ βk1
1 − (1 − αs)i

s
) ≤ T

a2

where T is the actual number of phases, whose expectation is:

ET ≤ 2 − log(αk1)
log(1 − αs)

Proof 5.5.2 Suppose the number of questions asked in some ith phase is βq. �en the expected number
of items obtained are sβq, and the variance is s(1 − s)βq. �erefore, by application of Chebyshev’s
inequality, we obtain the following probabilistic bound on the number of items Xi that are returned:

Pr(Xi ≤ (sβq − a
√
s(1 − s)βq)) ≤ 1

a2

To obtain at least sq items, we require

qsβ − a
√
s(1 − s)βq) ≥ sq

β − 1√
β

≥
a
√

(1 − s)
√qs

Since the most number of items asked will be in the �rst phase, we conservatively substitute q = k1
s , since

α ≤ 1

s , obtaining:

√
β − 1√

β
≥ a

√
(1 − s)
k1

Squaring the equation and simplifying gives us:

β ≥ 2 + a2(1 − s)
k1

Finally, the result above gives a bound for a single phase. Suppose the algorithm is applied for T phases,
using the union bound, we obtain that the probability of obtaining required number of items in each
phase is at least T

a2 , giving us the desired result.

2D Plane of Algorithms: In �gure 5.2, we depict the sequential and parallel extremes, along with the

intermediate solutions on varying α for a scenario where n = 500, k1 = 30, s = 0.3,m2 = 100, and
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Figure 5.2: Comparing algorithms on ET and EC for k1 = 30, s = 0.3,N = 500

β = ⌈2+ m2(1−s)
k1 ⌉. As can be seen in the �gure, the intermediate solutions provide valuable alternatives

to the sequential or parallel extremes (with at least one of EC or ET lower).

5.6 RelatedWork

We now brie�y describe work related to the �nding problem.

In [192], the goal is to use humans to assist in �nding one image relevant to an image search query,

which maps to an instance of our problem. �e work develops a machine-learned model of the delay

and accuracy of human workers, and uses it to heuristically determine whether to pursue the given

image. Our work is more general in that it considers not only a broader class of problems, but also

develops algorithms to determine all solutions that lie on the skyline of cost and latency.

Our work (especially when humans are assumed to not make mistakes) is also related to the vast

�eld of parallel computation [42, 64, 114, 179] wherein several models of parallel computation have

been proposed, including PRAMs [114], Bulk-Synchronous Parallel processing [179] and LogP [64],

and more recently, ones based on MapReduce [27, 113, 121]. �ere are a couple of key di�erences be-

tween this �eld and our work: First, this �eld typically assumes a �xed number of processors operat-

ing in parallel (in each phase)–while there are practical implementations that could vary the number

of processors. On the other hand, we can dynamically vary the number of humans working on our

tasks at any point. �ere is direct no notion of monetary cost in their setting, while in our setting

the total number of human operations or questions is the total cost. Second, the main consideration

in this �eld is to model and understand the tradeo�s between local computation and data storage at
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each processor and communication between processors. In our setting we have a central coordinator

which does the computation between phases (assumed negligible in comparison with the latency of

crowdsourcing), and leveraging human processors on demand to do simple tasks (�us, the human

processors don’t communicate with each other.) Of course, parallel computation has no counterparts

for the case when humans make mistakes.

In our work, we make the simplifying assumption that humans are equally likely to make er-

rors, like in Chapter 3. Recent work on crowdsourcing has tried to identify which workers to ask

which questions [81, 188], as well as learning characteristics of workers while asking questions [74,

112, 131, 189]. It remains to be seen if �ne-grained error models improve the performance of �nding

algorithms.

5.7 Conclusions

In this chapter, we studied the fundamental crowd-powered�nding problem, relevant inmany crowd-

sourcing applications. We developed optimal solutions that lies on the skyline of cost and latency for

two settings: when humans answer correctly, and when they may make errors. Unlike Chapter 3,

here, we focused primarily on instance-optimal guarantees. �e reason why instance optimal guar-

antees make more sense in the �nding problem is because the actual cost and error depends a lot

on the order in which the items are considered: for instance, if the items are so ordered that a lot of

“unhelpful” items are at the start, then our cost and latency both su�er. �erefore, we would like to

o�er guarantees that hold irrespective of the order in which the items are received by the algorithm.

In the next chapter, we move to the crowd-powered maximum problem, wherein we look at

questions asked to humans that consider pairs of items.
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Chapter 6

Algorithm 3: Maximum

6.1 Introduction

In this chapter, we design algorithms for the crowd-powered Max (Maximum) problem1. We have
a set of items (e.g., maps, photographs, Facebook pro�les), where conceptually each item has an

intrinsic “quality” measure (e.g., how useful is a map for a speci�c humanitarian mission, how well

does a photo describe a given restaurant, how likely is it that a given Facebook pro�le is the actual

pro�le of Lady Gaga). Of the set of items, we want to �nd the one with the largest quality measure.

While there are many possible underlying types of human questions that may be used for the max

problem, in this chapter we focus on a pairwise question: a human is asked to compare two items

and returns the one item he/she thinks is of higher quality. We call this type of pairwise comparison

a vote. Unlike the previous chapters, where there are at most ∣I∣ = n distinct questions (one question
for each item), here there are (n

2
) distinct questions, corresponding to a pairwise comparison or vote

for every pair of items.

If we ask two humans to compare the same pair of items they may give us di�erent answers,

either because they makes mistakes or because their notion of quality is subjective. Either way, the

algorithm may need to submit the same vote to multiple humans to increase the likelihood that its

�nal answer is correct (i.e. that the reportedmax is indeed the itemwith the highest qualitymeasure).

Of course, executing more votes increases the cost of the algorithm, either in running time and/or in

monetary compensation given to the humans for their work.

�ere are two types of algorithms for the Max Problem: structured and unstructured. With a

1
�is chapter is adapted from our paper [92], published at SIGMOD 2012, written jointly with Stephen Guo andHector

Garcia-Molina.
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structured approach, a regular pattern of votes is set up in advance, as in a tournament. For example,

if we have 8 items to consider, we can �rst compare 1 to 2, 3 to 4, 5 to 6 and 7 to 8. A�er we get all

results, we compare the 1-2 winner to the 3-4 winner and the 5-6 winner to the 7-8 winner. In the

third stage, we compare the two winners to obtain the overall winner, which is declared the max. If

we are concerned about voting errors, we can repeat each vote an odd number of times and use the

consensus result. For instance, three humans can be asked to do the 1-2 comparison, and the winner

of this comparison is the item that wins in 2 or 3 of the individual votes.

While structured approaches are very e�ective in predictable environments (such as in a sports

tournament), they are much harder to implement in a crowd-powered system, where humans may

simply not respond to a vote, or may take an unacceptably long time to respond. In our 8-item

example, for instance, a�er asking for the �rst 4 votes, and waiting for 10 minutes, we may have only

the answers to the 1-2 and 5-6 comparisons. We could then re-issue the 3-4 and 7-8 comparisons and

just wait, but perhaps we should also try comparing the winner of 1-2 with the winner of 5-6 (which

was not in our original plan).

�e point is that even if we start with a structured plan in mind, because of incomplete votes we

will likely be faced with an unstructured scenario: some subset of the possible votes have completed

(some with varying numbers of repetitions), and we have to answer one or both of the following

questions:

• Judgment Problem: what is our current best estimate for the overall max winner?

• Next Votes Problem: if we want to invoke more votes, which are the most e�ective ones to
invoke, given the current standing of results?

In this chapter, we focus precisely on these two problems, in an unstructured setting that is much

more likely to occur in a crowd-powered system or application. Both of these problems are quite

challenging because there may be many items in the data set, and because there are many possible

votes to invoke. An additional challenge is contradictory evidence. For instance, say we have three

items, and one vote told us 1 had higher quality than 2, another vote told us that 2 had higher quality

than 3, and a third one told us that 3 had higher quality than 1. What is the most likely max in a

scenario like this one where evidence is in con�ict? Should we just ignore “con�icting” evidence, but

how exactly do we do this? Yet another challenge is the lack of evidence for some items. For example,

say our evidence is that 1 is of higher quality than items 2, 3 and 4. However, there are two additional

items, 5 and 6, for which there is no data. If we can invoke one more vote, should we compare the
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current favorite, item 1, against another item to verify that it is the max, or should we at least try

comparing 5 and 6, for which we have no information?

�e Judgment Problem draws its roots from the historical paired comparisons problem, wherein
the goal is to �nd the best ranking of itemswhen noisy evidence is provided [70,116,172]. �e problem

is also related to theWinner Determination problem in the economic and social choice literature [57],
wherein the goal is to �nd the best item via a voting rule: either by �nding a “good” ranking of items
and then returning the best item(s) in that ranking, or by scoring each item and returning the best

scoring item(s). As we will see in Section 6.2, our solution to the Judgment Problem di�ers from

both of these approaches. As far as we know, no counterpart of the Next Votes problem exists in

the literature. (�e reason, we believe, is that before crowdsourcing, say in sporting events and user

evaluations, votes had to be set up in advance, without the possibility of dynamically issuing new

votes as results came in.) We survey work related to this chapter in more detail in Section 6.4.

6.1.1 Outline of Chapter

Here is the outline for the rest of the chapter:

• We study the following aspects of the Judgment problem (Section 6.2):

– We describe the Judgment problem formally. (Section 6.2.1)

– We propose a Maximum Likelihood (ML) formulation of the Judgment Problem, which

�nds the item that is probabilistically the most likely to be the maximum. (Section 6.2.2)

– We show that computing theMaximum Likelihood item isNP-Hard, while computation

of the probabilities involved is#P-Hard. (Section 6.2.3)

– We propose and evaluate four di�erent heuristics for the Judgment Problem, some of

which are adapted from solutions for sorting with noisy comparisons. (Section 6.2.4)

– For small problem settings, we compare the heuristic solutions to those provided byML.

When there is only a small number of votes available, we show that one of our methods,

a novel algorithm based on PageRank, is the best heuristic. (Section 6.2.5)

To the best of our knowledge, our ML formulation provides the �rst formal de�nition and

analysis of the Judgment Problem.

• We study the following aspects of the Next Votes Problem (Section 6.3)
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– We provide the �rst formal de�nition of the Next Votes Problem, and again, propose a

formulation based on ML. (Section 6.3.1)

– We show that selecting optimal additional votes is NP-Hard, while computation of the

probabilities involved is#P-Hard. (Section 6.3.2)

– Wepropose four novel heuristics for theNextVotes Problem. We experimentally evaluate

the heuristics, and when feasible, compare them to the ML formulation. (Section 6.3.3)

6.2 Judgment Problem

6.2.1 Problem Setup

Items and Permutations:We are given a set I of n items {I1, ..., In}, where each item Ii is associated
with a latent quality ci , with no two c’s being the same. If ci > c j, we say that Ii is greater than I j. Let
π denote a permutation function, e.g., a bijection from N to N , where N = {1, ..., n}. We use π(i) to
denote the rank, or index, of item Ii in permutation π, and π−1(i) to denote the item index of the ith
position in permutation π. If π(i) < π( j), we say that Ii is ranked higher than I j in permutation π.
Since no two items have the same quality, there exists a true permutation π∗ such that for any pair
(i , j), if π∗(i) < π∗( j), then cπ∗(i) > cπ∗( j). Note that throughout this chapter, we use the terms

permutation and ranking interchangeably.

Voting: We wish to develop an algorithm to �nd the maximum (greatest) item in set I , i.e., to �nd
π∗−1(1). �e only type of operation or information available to an algorithm is a pairwise vote: in
a vote, a human worker is shown two items Ii and I j, and is asked to indicate the greater item. We
assume that every worker votes correctly with probability 1 − e, (0 ≤ e ≤ 0.5), where e is the average
worker error probability. Like in Chapter 3 and Chapter 5, we assume that each worker answers

questions (here, votes) independently and with the same error probability. Recall that in Chapter 3

and Chapter 5, we had two types of error probabilities — e0, e1, denoting false positive and false
negative errors. Here, we have a single error probability e that is una�ected by the pair of items
being compared. (We are, however, studying a simpler setting than Chapter 4, since we do not take

individual worker accuracies into account.) As a result, each vote can be viewed as an independent

Bernoulli trial with failure probability e. In general, the value e is not available to the algorithm, but
may be used for algorithm evaluation. However, for reference we do study two algorithms where e is
known (possibly by using sampling on a few items or by using prior history).

Goals: No matter how the algorithm decides to issue vote requests to workers, at the end it must
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Figure 6.1: How should these items be ranked? Vote matrix (le�) and equivalent graph representation (right).

Arc weights indicate number of votes.

select what it thinks is the maximum item based on the evidence, i.e., based on the votes completed

so far. We start by focusing on this Judgment Problem, which we de�ne as follows:

Problem 6.2.1 (Judgment) Given W, predict the maximum item in I , π∗−1(1).

In Section 6.3, we then address the other important problem, i.e., how to request additional votes

(in case the algorithm decides it is not done yet). In general, a solution to the Judgment Problem

is based upon a scoring function score(⋅). �e scoring function �rst computes a score for each item
Ii , with score(i) representing the “con�dence” that item Ii is the true maximum. As we will see,
for some strategies scores are actual probabilities, for others they are heuristic estimates. �en, the

strategy selects the item with the largest score as its answer.

Representation:We represent the evidence obtained as an n × n vote matrixW , with wi j being the

number of votes for I j being greater than Ii . Note that wii = 0 for all i. No other assumptions are
made about the structure of matrixW . �e evidence can also be viewed as a directed weighted graph
Gv = (V ,A), with the vertices being the items and the arcs representing the vote outcomes. For each
pair (i , j), if wi j > 0, arc (i , j) with weight wi j is present in A. For example, Figure 6.1 displays a
sample vote matrix and equivalent graph representation. In this example, item 1 is called A, item 2
is B, and so on. For instance, there is an arc from vertex (item) B to vertex C with weight 2 because
w2,3 = 2, and there is a reverse arc from C to B with weight 1 because w3,2 = 1. If there are no votes
(wi j = 0, as from B to A), we can either say that there is no arc, or that the arc has weight 0.
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6.2.2 Maximum Likelihood

Preliminaries:We �rst present aMaximum Likelihood (ML) formulation of the Judgment Problem.

We directly compute the item that has the highest probability of being the maximum item in I , given
vote matrixW . Assuming that average worker error probability e is known, the ML formulation we
present is the optimal feasible solution to the Judgment Problem.

Let π be a random variable over the set of all n! possible permutations, where we assume a-
priori that each permutation is equally likely to be observed. We denote the probability of a given

permutation πd given the vote matrixW as Pr(π = πd ∣W). For the ease of exposition, we adopt the
shorthand Pr(πd ∣W) instead of writing Pr(π = πd ∣W). To derive the formula for Pr(πd ∣W), we �rst
apply Bayes’ theorem,

Pr(πd ∣W) = Pr(W ∣πd)Pr(πd)
Pr(W) = Pr(W ∣πd)Pr(πd)

∑
j
Pr(W ∣π j)Pr(π j)

(6.1)

From our assumption that the prior probabilities of all permutations are equal, Pr(πd) = 1

n! .

Now consider Pr(W ∣πd). Given a permutation πd , for each unordered pair {i , j}, the probability
pπd (i , j) of observing wi j and w ji is the binomial distribution probability mass function (p.m.f.):

pπd (i , j) =
⎧⎪⎪⎨⎪⎪⎩

(1 − e)w ji ew i j if πd(i) < πd( j)
(1 − e)w i j ew ji if πd( j) < πd(i)

If both wi j and w ji are equal to 0, then pπd (i , j) = 1. Now, given a permutation πd , observing the

votes involving an unordered pair {i , j} is conditionally independent of observing the votes involving
any other unordered pair. Using this fact, Pr(W ∣πd), the probability of observing all votes given a
permutation πd is simply:

Pr(W ∣πd) = ∏
i , j∶i< j

pπd (i , j) (6.2)

Since we know the values of both e andW , we can derive a formula for Pr(πd ∣W) in Equation 6.1.
�e most likely permutation(s), is simply:

argmax
d
Pr(πd ∣W) (6.3)

�e permutations optimizing Equation 6.3 are also known as Kemeny permutations or Kemeny rank-
ings [60].
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For example, consider the matrixW of Figure 6.1. We do not show the computations here, but

it turns out that the two most probable permutations of the items are (D,C , B,A) and (C ,D, B,A),
with all other permutations having lower probability. �is result roughlymatches our intuition, since

item A was never voted to be greater than any of the other items, and C and D have more votes in
favor over B.
We can derive the formula for the probability that a given item I j has a given rank k. Let π−1(i)

denote the position of item i in the permutation associatedwith random variable π. We are interested
in the probability Pr(π−1(k) = j∣W). Since the event (π = πd) is disjoint for di�erent permutations
πd , we have:

Pr(π−1(k) = j∣W) = ∑
d∶π−1d (k)= j

Pr(πd ∣W)

Substituting for Pr(πd ∣W) using Equation 6.1 and simplifying, we have:

Pr(π−1(k) = j∣W) =
∑

d∶π−1d (k)= j
Pr(W ∣πd)

∑
l
Pr(W ∣πl)

(6.4)

Since we are interested in the item I j with the highest probability of being rank 1, e.g., Pr(π−1(1) =
j∣W), we now have the Maximum Likelihood formulation to the Judgment Problem:

ML Formulation 1 (Judgment) Given W and e, determine: argmax j Pr(π−1(1) = j∣W).

In the example graph of Figure 6.1, whileC andD both haveKemeny permutationswhere they are
the greatest items, D is the more likely max over a large range of e values. For instance, for e = 0.25,
Pr(π−1(1) = C∣W) = 0.36 while Pr(π−1(1) = D∣W) = 0.54. �is also matches our intuition, since C
has one vote where it is less than B, while D is never voted to be less than either A or B.

Maximum Likelihood Strategy: Equation 6.4 implies that we only need to compute Pr(W ∣πd) for
each possible permutation πd , using Equation 6.2, in order to determine Pr(π−1(k) = j∣W) for all
values j and k. In other words, by doing a single pass through all permutations, we can compute the
probability that any item I j has a rank k, given the vote matrixW .
We call this exhaustive computation of probabilities the Maximum Likelihood Strategy and use

it as a baseline in our experiments. Note that the ML strategy is the optimal feasible solution to the
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Judgment Problem. �e strategy utilizes a ML scoring function, which computes the score of each

item as score( j) = Pr(π−1(1) = j∣W). �e predicted max is then the item with the highest score. �e
strategy can be easily adapted to compute the maximum likelihood of arbitrary ranks (not just �rst)

over the set of all possible permutations.

6.2.3 Computational Complexity

Hardness of the Judgment Problem: In Section 6.2.2, we presented a formulation for the Judg-

ment Problem based on ML for �nding the item most likely to be the max (maximum) item in I .
Unfortunately, the strategy based on that formulation was computationally infeasible, as it required

computation across all n! permutations of the items in I . We now show that the optimal solution to
the problem of �nding the maximum item is in fact NP-Hard using a reduction from the problem

of determining Kemeny winners [100]. (Hudry et al. [100] actually show that determining Slater win-
ners in tournaments is NP-Hard, but their proof also holds for Kemeny winners. We will describe the
Kemeny winner problem below.) Our results and proof are novel.

�eorem 6.2.2 (Hardness of the Judgment Problem) Finding the maximum item given evidence isNP-
Hard.

Proof 6.2.3 We�rst describe the Kemeny winner problem. In this proof, we use an alternate (but equiv-
alent) view of a directed weighted graph like Figure 6.1. In particular, we view weighted arcs as multiple
arcs. For instance, if there is an arc from vertex A to B with weight 3, we can instead view it as 3 separate
arcs from A to B. We use this alternate representation in our proof.

An arc i → j respects a permutation if the permutation has I j ranked higher than Ii (and does not if
the permutation has Ii ranked higher than I j). A Kemeny permutation is simply a permutation of the
vertices (items), such that the number of arcs that do not respect the permutation is minimum. �ere
may be many such permutations, but there always is at least one such permutation. �e starting vertex
(rank 1 item) in any of these permutations is a Kemeny winner. It can be shown that �nding a Kemeny
winner is NP-Hard (using a reduction from the feedback arc set problem, similar to the proof in Hudry
et al. [100]).

We now reduce the Kemeny winner determination problem to one of �nding the maximum item.
Consider a directed weighted graph G, where we wish to �nd a Kemeny winner. We show that with a
suitable probability e, which we set, the maximum item (i.e., the solution to the Judgment Problem) in
G is a Kemeny winner. As before, the probability that a certain item I j is the maximum item is the right
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hand side of Equation 6.4 with k set to 1. �e denominator can be ignored since it is a constant for all
j. We set worker error probability e to be very close to 0. In particular, we choose a value e such that
e

(1−e) <
1

n! .
Now, consider all permutations πd that are not Kemeny permutations. In this case, it can be shown

that
∑

d∶πd is not Kemeny
Pr(W ∣πd) < Pr(W ∣πs)

for any Kemeny permutation πs. �us, the item I j that maximizes Equation 6.4 (for k = 1) has to be
one that is a Kemeny winner.

To see why
∑

d∶πd is not Kemeny
Pr(W ∣πd) < Pr(W ∣πs)

for a Kemeny permutation πs, notice that the le� hand side is at most n! × Pr(W ∣π′d) where π′d is the
permutation (not Kemeny) that has the least number of arcs that do not respect the permutation. Note
that Pr(W ∣π′d) is at most Pr(W ∣πs) × e

(1−e) , since this permutation has at least one more mistake as
compared to any Kemeny permutation.

�erefore, we have shown that, for a suitable e, the maximum item in G is a Kemeny winner. �us,
we have a reduction from the Kemeny winner problem to the Judgement problem. Since �nding a Ke-
meny winner is NP-Hard, this implies that �nding the maximum item in G is NP-Hard.

#P-Hardness of Probability Computations: In addition to being NP-Hard to �nd the max item,

we can show that evaluating the numerator of the right hand side of Equation 6.4 (with k = 1) is
#P-Hard, in other words: computing Pr(π−1(1) = j,W) is#P-Hard.

We use a reduction from the problem of counting the number of linear extensions in a directed

acyclic graph (DAG), which is known to be#P-Hard.

�eorem 6.2.4 (#P-Hardness of Probability Computation) Computing Pr(π−1(1) = j,W) is #P-
Hard.

Proof 6.2.5 A linear extension is a permutation of the vertices, such that all arcs in the graph respect
the permutation (i.e., a linear extension is the same as a Kemeny permutation for a DAG).

Consider a DAG G = (V ,A). We add an additional vertex x such that there is an arc from each
of the vertices in G to x, giving a new graph G′ = (V ′,A′). We now show that computing Pr(π−1(1) =
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x ,W) in G′ can be used to compute the number of linear extensions in G. Notice that:

Pr(π−1(1) = x ,W) =
∣A′∣
∑
i=0

ai(1 − e)ie∣A′∣−i

= (1 − e)∣A′∣ ×
∣A′∣
∑
i=0

ai(
e
1 − e

)∣A′∣−i (6.5)

where ai is the number of permutations where there are i arcs that respect the permutation. Clearly,
the number that we wish to determine is a∣A′∣, since that is the number of permutations that correspond
to linear extensions. Equation 6.5 is a polynomial of degree ∣A′∣ in e

(1−e) , thus, we may simply choose
∣A′∣ + 1 di�erent values of e

1−e , generate ∣A
′∣ + 1 di�erent graphs G′, and use the probability computation

in Equation 6.5 to create a set of ∣A′∣ + 1 equations involving the ai coe�cients. We may then derive the
value of a∣A∣ using Lagrange’s interpolation formula.

Since vertex x is the only maximum vertex in G′, by computing Pr(π−1(1) = x ,W) in G′, we count
the number of linear extensions in DAG G. Since counting the number of linear extensions in a DAG
is#P-Hard, this implies that the computation of Pr(π−1(1) = x ,W) in G′ is#P-Hard, which implies
that the computation of Pr(π−1(1) = j,W) for directed graph Gv (associated with vote matrix W) is
#P-Hard.

6.2.4 Heuristic Strategies

�e ML scoring function is computationally ine�cient and also requires prior knowledge of e, the
average worker error probability, which is not available to us in real-world scenarios. We next inves-

tigate the performance and e�ciency of four heuristic strategies, each of which runs in polynomial

time. �e heuristics we present, excluding the Indegree heuristic, do not require explicit knowledge

of the worker error probability.

Indegree Strategy:�e �rst heuristic we consider is an Indegree scoring function proposed by Cop-

persmith et al. [63] to approximate the optimal feedback arc set in a directed weighted graph where

arc weights li j, l ji satisfy li j + l ji = 1 for each pair of vertices i and j.
We can transform the vote matrix W to a graph where this Indegree scoring function can be

directly applied. �e idea is to construct a complete graph between all items where arc weights l ji are
equal to Pr(π(i) < π( j)∣wi j ,w ji), where l ji re�ects the probability that Ii is greater than I j given the
local evidence wi j and w ji .

�e Indegree scoring function computes the score of item I j as: score( j) = ∑i li j . Intuitively,
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vertices with higher scores correspond to items which have compared favorably to other items, and

hence should be ranked higher. �e predicted ranking has been shown to be a constant factor approx-

imation to the feedback arc set for directed graphs where all arcs (i , j) are present and li j+ l ji = 1 [63].
�e running time of this heuristic is dominated by the time to do the �nal sort of the scores.

Let us walk through the example graph in Figure 6.1. First, for those pairs of vertices that do

not have any votes between them, we have lAC = 0.5, lCA = 0.5, lAD = 0.5, and lDA = 0.5. By
symmetry, lCD = 0.5 and lDC = 0.5. For e = 0.45, we have lAB = 0.599, lBA = 0.401, lBC =
0.55, lCB = 0.45, lBD = 0.646, and lDB = 0.354. With these computed arc weights, we obtain the
scores: score(A) = 1.401, score(B) = 1.403, score(C) = 1.55, and score(D) = 1.65, generating a pre-
dicted ranking of (D,C , B,A), with item D being the predicted maximum item. Note that if e is
smaller, e.g. e = 0.05, the Indegree heuristic predicts the same ranking.

Local Strategy: �e Indegree heuristic is simple to compute, but only takes into account local ev-

idence. �at is, the score of item Ii only depends on the votes that include Ii directly. We now
consider a Local scoring function, adapted from a heuristic proposed by David [71], which considers

evidence two steps away from Ii . �is method was originally proposed to rank items in incomplete
tournaments with ties. We adapted the scoring function to our setting, where there can be multiple

comparisons between items, and there are no ties in comparisons.

�is heuristic is based on the notion of wins and losses, de�ned as follows: wins(i) = ∑ jw ji and

losses(i) = ∑i wi j. For instance, in Figure 6.1, vertex B has 3 wins and 5 losses.
�e score score(i) has three components. �e �rst is simply wins(i) − losses(i), re�ecting the

net number of votes in favor of Ii . For vertex B, this �rst component would be 3 − 5 = −2. Since this
�rst component does not re�ect the “strength” of the items Ii was compared against, we next add a
“reward”: for each I j such that w ji > wi j (i has net wins over j), we add wins( j) to the score of Ii . In
our example, B only has net wins over A, so we reward B with wins(A) (which in this case is zero).
On the other hand, sinceC beat out B, thenC gets a reward ofwins(B) = 3 added to its score. Finally,
we “penalize” score(i) by subtracting losses( j) for each I j that overall beat Ii . In our example, we
subtract from score(B) both losses(C) = 2 and losses(D) = 1. �us, the �nal score score(B) is −2
plus the reward minus the penalty, i.e., score(B) = −2 + 0 − 3 = −5.
More formally, score score(i) is de�ned as follows:

score(i) = wins(i) − losses(i) +∑
j
[1(w ji > wi j)wins( j)] −∑

j
[1(wi j > w ji)losses( j)]

Having computed score(⋅), we sort all items by decreasing order of score. �e resulting permutation
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is our predicted ranking, with the vertex having largest score being our predicted maximum item.
To complete the example of Figure 6.1,�e strategy above computes the following scores: score(A) =

0 − 2 − 5 = −7, score(B) = 3 − 5 − 3 = −5, score(C) = 3 − 2 + 3 = 4, and score(D) = 4 − 1 + 3 = 6. �e
predicted ranking is then (D,C , B,A), with item D being the predicted maximum item.

PageRank Strategy: Both the Indegree and Local heuristics use only information one or two steps

away to make inferences about the items of I . We next consider a global heuristic scoring function
inspired by the PageRank [148] algorithm. �e general idea behind using a PageRank-like procedure

is to utilize the votes inW as a way for items to transfer “strength” between each other. We design

a modi�ed PageRank algorithm to predict the maximum item in I , which in particular, can handle
directed cycles in the directed graph representingW .
Consider again the directed graph Gv representing the votes ofW (Figure 6.1 is an example). Let

d+(i) to denote the outdegree of vertex i in Gv , e.g. d+(i) = ∑ jwi j. If d+(i) = 0, we say that i is
a sink vertex. Let pagerankt(i) represent the PageRank of vertex i in iteration t. We initialize each
vertex to have the same initial PageRank, e.g., pagerank0(⋅) = 1

n . In each iteration t+ 1, we apply the
following update equation to each vertex i:

pagerankt+1(i) = ∑
j

w ji

d+( j) pagerankt( j) (6.6)

For each iteration, each vertex j transfers all its PageRank (from the previous iteration) proportionally
to the other vertices i whom workers have indicated may be greater than j, where the proportion of
j’s PageRank transferred to i is equal to w ji

d+( j) . Intuitively, pagerankt(i) can be thought as a proxy
for the probability that item Ii is the maximum item in I (during iteration t).
What happens to the PageRank vector a�er performing many update iterations using Equa-

tion 6.6? Considering the strongly connected components (SCCs) of Gv , let us de�ne a terminal
SCC to be a SCC whose vertices do not have arcs transitioning out of the SCC. A�er a su�cient

number of iterations, the PageRank probability mass in Gv becomes concentrated in the terminal

SCCs of Gv , with all other vertices outside of these SCCs having zero PageRank [48]. In the context

of our problem, these terminal SCCs can be thought of as sets of items which are ambiguous to order.

Our proposed PageRank algorithm is described in Strategy 4. We now describe how our strategy

is di�erent from the standard PageRank algorithm. �e original PageRank update equation is:

pagerankt+1(i) =
1 − γ
n

+ γ∑
j

w ji

d+( j) pagerankt( j)
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Algorithm 4: PageRank Maximum Strategy

Data: n items, vote matrixW , α iterations
Result: ans = predicted maximum item
begin

construct Gv = (V ,A) fromW ;
// compute all outdegrees

compute d+[⋅] for each vertex;
forall the i ∶ 1 . . . n do

if d+[i] == 0 then
wii ← 1;

// pagerank0 is the PageRank vector in iteration 0
pagerank0[⋅] ← 1

n ;

for k ∶ 1 . . . α do

for i ∶ 1 . . . n do

for j ∶ 1 . . . n, j ≠ i do
pagerankk[i] ← pagerankk[i] +

w ji
d+[ j] pagerankk−1[ j];

compute period[⋅] of each vertex using �nal iterations of pagerank[⋅];
for i ∶ 1 . . . n do

// score[⋅] is a vector storing average PageRank
score[i] ← 0;
for j ∶ 0 . . . period[i] − 1 do

score[i] ← score[i] + pagerankα− j[i];
score[i] ← score[i]

period[i] ;

ans ← argmaxi score[i];
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Comparing the original equation and Equation 6.6, the primary di�erence is that we use a damping

factor γ = 1, e.g. we remove jump probabilities. PageRank was designed to model the behavior of a
random surfer traversing the web, while for the problem of ranking items, we do not need to model

a random jump vector.

A second di�erence between our modi�ed PageRank and the original PageRank is that prior

to performing any update iterations, for each sink vertex i, we set wii equal to 1 in W . In our set-
ting, sinks correspond to items which may be the maximum item (e.g., no worker voted that Ii is
less than another item). By setting wii to 1 initially, from one iteration to the next, the PageRank in

sink i remains in sink i. �is allows PageRank to accumulate in sinks. Contrast this with the stan-
dard PageRank methodology, where when a random surfer reaches a sink, it is assumed that (s)he

transitions to all other vertices with equal probability.

Finally, a caveat to our PageRank strategy is that the PageRank vector (pagerank(⋅) in Strategy 4)
may not converge for some vertices in terminal SCCs. To handle the oscillating PageRank in terminal

SCCs, we execute our PageRank update equation (Equation 6.6) for a large number of iterations,

denoted as α in Strategy 4. �en, we examine the �nal iterations, say �nal 10%, of the PageRank
vector to empirically determine the period of each vertex, where we de�ne the period as the number
of iterations for the PageRank value of a vertex to return to its current value. In practice, we �nd

that running PageRank for α iterations, where α = O(n), is su�cient to detect the period of nearly
all vertices in terminal SCCs. For example, consider a graph among 3 items A, B,C with 3 arcs:
(A, B), (B,C), and (C , B). All vertices initially have 1

3
PageRank probability. A�er 1 iteration, the

PageRank vector is (0, 2
3
, 1
3
). A�er 2 iterations, the PageRank vector is (0, 1

3
, 2
3
). And so on. In this

example, item B and C each have periods of 2.

With the periods computed for each vertex, we compute an average PageRank value for each
vertex over its period. �is average PageRank is used as the scoring function score(⋅) for this strategy.
A�er the termination of PageRank, we sort the vertices by decreasing order of score(⋅), and predict
that the vertex with maximum average PageRank corresponds to the maximum item in I . Note that
our PageRank heuristic is primarily intended to predict a maximum item, not to predict a ranking

of all items (as many items will end up with no PageRank). �e details of our implementation are

displayed in Strategy 4.

To illustrate our PageRank heuristic, consider again the example in Figure 6.1. �ere are 2 SCCs in

the graph: (A) and (B,C ,D), with (B,C ,D) being a terminal SCC. Each of the 4 vertices is initialized
with 0.25 PageRank. A�er the �rst iteration, the PageRank vector is (0, 0.375, 0.35, 0.275). A�er the
second iteration, the PageRank vector is (0, 0.375, 0.35, 0.275). A�er ∼20 iterations, the PageRank
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Heuristic Prediction of Max

ML D
Indegree D
Local D

PageRank C
Iterative C or D

Table 6.1: Predictions using each heuristic for Figure 6.1.

vector oscillates around (0, 0.217, 0.435, 0.348). With a su�ciently large number of iterations and an
appropriately chosen convergence threshold, the heuristic determines a period of 1 for both SCCs

and computes an average PageRank vector of (0, 0.217, 0.435, 0.348). �e PageRank heuristic then
predicts item C to be the maximum item in I .

Iterative Strategy:We next propose an Iterative heuristic strategy to determine the maximum item

in I . �e general framework is the following:

1. Place all items in a set.

2. Rank the items in the set by a scoring metric.

3. Remove the lower ranked items from the set.

4. Repeat steps 3 and 4 until only one item remains.

�ere are two parameters we can vary in this framework: the scoring metric and the number of

items eliminated each iteration. Let us de�ne the di f (i) metric of item Ii to be equal to wins(i) −
losses(i). An implementation of the Iterative strategy using the di f metric is displayed in Strategy 5.
In our particular implementation, we emphasize computational e�ciency and remove half of the

remaining items each iteration. �e Iterative strategy relies upon the elimination of lower ranked

items before re-ranking higher ranked items. With each iteration, as more items are removed, the

di f s of the higher ranked items separate from the di f s of the lower ranked items. Basically, by
removing lower ranked items, the strategy is able to more accurately rank the remaining set of items.

�e strategy can be thought of as iteratively narrowing in on the maximum item.

It is important to note that other scoring metrics can be used with this Iterative strategy as well.

For example, by iteratively ranking with the Local heuristic, we were able to achieve (slightly) better

performance than the simple di f metric. Our method is similar to the Greedy Order algorithm
proposed by Cohen et al. [58], who considered a problem related to feedback arc set. Our strategy
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di�ers in that it ismore general (e.g., it can utilizemultiplemetrics), and our strategy can be optimized

(e.g., if we eliminate half of the items each iteration, we require only a logarithmic number of sorts,

as opposed to a linear number).

�e Iterative strategy can also be viewed as a scoring function score(⋅), like the prior heuristics
we have examined. Denoted as score[⋅] in Strategy 5, we can assign each item a score equal to the
iteration number in which it was removed from set T . Using this scoring function score(⋅), the
predicted maximum item is then simply argmaxi score(i).
Returning to the example graph in Figure 6.1, the Iterative heuristic �rst computes the di f metric

for each item: di f (A) = −2, di f (B) = −2, di f (C) = 1 and di f (D) = 3. �e items are then placed
in a set and sorted by di f . In the �rst iteration, items A and B are assigned ranks 3 and 4 and re-
moved from the set. �en, di f is recomputed among all remaining items in the set, di f (C) = 0 and
di f (D) = 0. In the second iteration, either item C or D is removed and assigned rank 2. In the third
iteration, the remaining item is removed and assigned rank 1. �erefore, the predicted ranking of the

Iterative heuristic is equally likely to be (C ,D, B,A), (C ,D,A, B), (D,C , B,A), or (D,C ,A, B), with
the predicted maximum item of the heuristic being item C or D with equal probability.
To summarize, Table 6.1 displays the predictions for ML and our four heuristics for the example

displayed in Figure 6.1. Next, we evaluate the heuristic strategies via experiments.

6.2.5 Experiments

In this section, we experimentally compare our heuristic strategies: Indegree (DEG), Local (LOC),

PageRank, (PR), and Iterative (ITR). We also compare them with the Maximum Likelihood (ML)

Strategy, which we consider the best possible way to select the maximum. However, since ML is

computationally very expensive, we only do this comparison on a small scenario. For our experi-

ments, we synthetically generate problem instances, varying : n (the number of items in I), votes
(the number of votes we sample forW), and e (average worker error probability). We prefer to use
synthetic data, since it lets us study a wide spectrum of scenarios, with highly reliable or unreliable

workers, and with many or few votes.

In our base experiments, we vary the number of sampled votes votes, from 0 to 5n(n − 1) and
vary worker accuracy (1 − e) from 0.55 to 0.95. As a point of reference, we refer to n(n−1)

2
votes as

votes = 1x Edge Coverage, e.g. each pair of items is sampled approximately once. So 5n(n − 1) votes
is equivalent to votes = 10x Edge Coverage in our experiments.
Each data point (given n, (1− e), votes values) in our results graphs is obtained from 5,000 runs.

Each run proceeds as follows: We initializeW as an n×n null matrix and begin with an arbitrary true
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Algorithm 5: Iterative Strategy

Data: n items, vote matrixW
Result: ans = predicted maximum item
// di f [⋅] is the scoring metric
di f [⋅] ← 0;
for i ∶ 1 . . . n do

for j ∶ 1 . . . n, j ≠ i do
di f [ j] ← di f [ j] +wi j;
di f [i] ← di f [i] −wi j;

initialize set L;
for i ∶ 1 . . . n do

L ← L ∪ i;
while ∣L∣ > 1 do
sort items in L by di f [⋅];
for r ∶ ( ∣L∣

2
+ 1) . . . ∣L∣ do

remove item i (with rank r) from L;
for j ∶ j ∈ L do

if wi j > 0 then
di f [ j] ← di f [ j] −wi j;
di f [i] ← di f [i] +wi j;

if w ji > 0 then
di f [i] ← di f [i] −w ji ;
di f [ j] ← di f [ j] +w ji ;

// L[1] is the �nal item in L
ans ← L[1];

permutation π∗ of the items in I . Let U denote the set of all tuples (i , j) where i ≠ j. We randomly
sample votes tuples from U with replacement. A�er sampling a tuple (i , j), we simulate the human
worker’s comparison of items Ii and I j. If π∗(i) < π∗( j), with probability (1 − e), we increment w ji ,

and with probability e, we increment wi j. If π∗( j) < π∗(i), with probability (1 − e), we increment
wi j, and with probability e, we increment w ji .

For each generatedmatrixW in a run, we apply each of our heuristic strategies to obtain predicted
rankings of the items in I .
Comparing the predicted ranking with π∗ we record a “yes” if the predicted maximum agrees

with the true maximum. A�er all runs have completed, we compute Precision at 1 (P@1), the fraction

of “yes” cases over the number of runs. Similar results were observed for other evaluation metrics.
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Figure 6.2: Precision at 1 (P@1) versus Edge Coverage.

As a �rst experiment, we consider the prediction performance of Maximum Likelihood (ML)

and the four heuristics for a set of 5 items with e = 0.25, displayed in Figure 6.2(a). We choose a small
set of items, so that ML can be computed. We �nd that as the number of votes sampled increases, the

P@1 of all heuristics (excluding PageRank) increase in a concave manner, approaching a value of 0.9

for 10x Edge Coverage (e.g., if 5n(n − 1) votes are uniformly sampled, the heuristics can predict the
maximum item 90% of the time, even though average worker accuracy is 0.75).

ML has better performance than all the four heuristics.

As expected,MLperforms the best in Figure 6.2(a), but recall thatML requires explicit knowledge

of e, and it is computationally very expensive. Still, the ML curve is useful, since it tells us how far
the heuristics are from the optimal feasible solution (ML). Also, note that PageRank (PR) performs

poorly, indicating that PageRank is poor when the number of items is small.
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Iterative is the best of the four heuristics when the number of votes sampled is
n(n−1)
2
, e.g. 1x

Edge Coverage.

For a larger experiment, we consider the problem of prediction for n = 100 items in Figure 6.2(b),
(c), and (d). ML is necessarily omitted from this experiment. Looking at the graphs, we �rst note

that the Iterative (ITR) heuristic performs signi�cantly better than the other heuristics, particularly

when e = 0.45 or e = 0.25. �is is best demonstrated by Figure 6.2(c), which shows that for e =
0.25 and 10x Edge Coverage, the Iterative heuristic has a P@1 of over 0.9, whereas the second best

heuristic, Indegree (DEG), only has a P@1 of approximately 0.5. Looking at the middle graph again,

note how the performance gap between the Iterative heuristic and the other heuristics widens as the

Edge Coverage increases from 1x to 5x. �e strength of the Iterative strategy comes from its ability to

leverage the large number of redundant votes, in order to iteratively prune out lower-ranked items

until there is a predicted maximum. �e strategy is robust even when worker accuracy is low. When

average worker accuracy is high, Figure 6.2(d), the Iterative heuristic still is the heuristic of choice,

although the performance gap between the Iterative and Indegree or Local (LOC) heuristics decreases

to a minimal amount, as the number of votes sampled becomes very large.

PageRank is a poor heuristic when worker accuracy is low. However, when worker accuracy is

reasonable, PageRank is quite e�ective, even when the number of votes is low.

We next focus upon the performance of the PageRank (PR) heuristic. For e = 0.25 and e = 0.05,
the PageRank heuristic’s prediction curve crosses the prediction curves for the Indegree (DEG) and

Local (LOC) heuristics. �is is an indication that the PageRank heuristic is quite e�ective when

the number of votes is low, but is unable to utilize the information from additional votes when the

number of votes is large. We also observe the poor performance of PageRank when e = 0.45, in
Figure 6.2(b), indicating that PageRank is not a suitable heuristic when worker accuracy is low.

Over various worker accuracies, Iterative is the best heuristic, followed by PageRank, Local and

Indegree.

From the prior experiments, we see that prediction performance for each strategy varies greatly

with respect to the average worker accuracy (1 − e). We next directly investigate prediction perfor-
mance versus worker accuracy for a �xed 1x Edge Coverage in Figure 6.3(le�). We �nd that for this
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Figure 6.3: P@1 versus worker accuracy (le�), 1x Edge Coverage. P@1 versus number of votes (right), e=0.05.

100 items.

�xed Edge Coverage, the Iterative (ITR) strategy performs the best, followed by PageRank (PR), then

the Local (LOC) and Indegree (DEG) heuristics. As expected, prediction performance increases with

worker accuracy across all strategies. In particular, note the large slope of the Iterative and PageRank

prediction curves, as compared to the Local and Indegree prediction curves, which are near identical.

PageRank is the best of the four heuristics when there are few votes and worker accuracy is high.

All experiments considered thus far examine prediction when the number of votes is an order

of magnitude larger than the number of items. For a more di�cult scenario, we examine prediction

performance when the number of votes is approximately the same as the number of items. Fig-

ure 6.3(right) displays P@1 for 100 items when the number of votes is varied from 20 to 200 and

e = 0.05. We observe that PageRank (PR) has the highest prediction performance among the four
heuristics. Conducting several other experiments, we �nd that, so long as worker accuracy is high,

PageRank facilitates good prediction, even when the number of votes is low relative to the number of

items. �is fact will prove useful when we consider the problem of selecting which additional votes

to request, given an initial sparse vote graph.

From our experiments, we conclude that Iterative (ITR) is the strategy of choice when evaluating

a large number of votes (relative to the number of items), whereas PageRank is the preferred heuristic

when evaluating a small number of votes.
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6.3 Next Votes Problem

We now consider the second half of the Max Problem, the Next Votes Problem. Beginning with an

initial vote matrixW , if we wish to submit additional vote requests to a crowdsourcing marketplace,
which additional votes (i.e., comparisons between pairs of items) should be requested to augment

our existing vote matrix W , and improve our prediction of the maximum item? In particular, we
assume that we are given a vote budget of b additional votes that may be requested. �ere are two
ways in which we can use this vote budget: (a) an adaptive strategy, where we submit some initial

votes, get some responses, then submit some more, get more responses, and so on, or (b) a one-shot

strategy, where we submit all votes at once. In this chapter, we consider a one-shot strategy with

a vote budget of b. �is strategy is more relevant in a crowdsourcing setting since the latency of
crowdsourcing is high. Once the responses for these vote requests are received, we assume that the

entire evidence thus far is our new vote matrix W ′. Note that we can iteratively submit batches of

votes to improve our prediction of the maximum item. As before, we assume that the response to

each vote is independently correct with probability (1 − e). We de�ne the Next Votes Problem as
follows:

Problem 6.3.1 (Next Votes) Given b,W, select b additional votes and predict the maximum item
in I , π∗−1(1).

6.3.1 Maximum Likelihood

We�rst present aMaximumLikelihood (ML) formulation of the selection of votes for the Next Votes

Problem; we directly compute the multiset of votes which most improves the prediction of the max-

imum item in I . Assuming that average worker error probability e is known, the ML vote selection
formulation we present is the optimal feasible solution to the Next Votes Problem. Beforing present-

ing the ML formulation, we �rst provide some de�nitions needed for the Next Votes Problem.

Vote and Answer Multisets:We represent a potential vote (comparison) between items Ii and I j as
a unordered pair {Ii , I j}. Given a vote budget b, all possible multisetsQ of b votes are allowed (note
that repetition of votes is allowed). For a potential vote {Ii , I j}, we de�ne an answer to be a tuple
({Ii , I j}, Ix), where the �rst element of the tuple is an unordered pair, and the second element is one
of the items in the pair indicating the human worker’s answer (e.g., x = i if the worker states that Ii
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is greater than I j, or x = j otherwise).
For each vote multisetQ, we de�ne an answer multiset a ofQ to be a multiset of answer tuples,

where there is a one-to-onemapping fromeachunordered pair inQ to an answer tuple in a. Each vote
is answered (independently) with probability of error e. As an example, ifQ = {{Ii , I j}, {Ik , Il}}, a
possible answer multiset a that could be received from the workers is {({Ii , I j}, Ii), ({Ik , Il}, Ik)}.
For a multiset of b votes, there are 2b possible answer multisets. Let A(Q) denote the multiset of all
possible answer multisets ofQ.
Having de�ned vote and answermultisets, we next consider the probability of receiving an answer

multiset givenW , then explain how to compute the con�dence of themaximum itemhaving received
an answer multiset, before �nally presenting the ML vote selection strategy.

Probabilities of Multisets and Con�dences: Suppose that we submitted vote multiset Q and re-
ceived answer multiset a from the crowdsourcing marketplace. Let Pr(a∣W) denote the probability
of observing an answer multiset a forQ, given initial vote matrixW . We have the following:

Pr(a∣W) = Pr(a ∧W)
Pr(W) (6.7)

where a ∧W is the new vote matrix formed by combining the votes of a andW .
Our estimate for how well we are able to predict the maximum item in I is then the probability

of the maximum item, given the votes of our new vote matrix, i.e., a ∧W . We denote this value by
Pmax(a ∧W), i.e., this value is our con�dence in the maximum item. �e computation, based upon
Equation 6.4, is the following:

Pmax(a ∧W) = max
i
Pr(π−1(1) = i∣a ∧W)

�is simpli�es to give:

Pmax(a ∧W) = maxi Pr(π
−1(1) = i , a ∧W)

Pr(a ∧W) (6.8)

Maximum Likelihood Strategy: We can now de�ne the Maximum Likelihood formulation of the

Next Votes Problem. We wish to �nd the multisetQ of b votes such that, on average over all possible
answer multisets for Q (and weighted by the probability of those answer multisets), our con�dence
in the prediction of the maximum item is greatest.
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In other words, we want to �nd the multiset that maximizes:

∑
a∈A(Q)

Pr(a∣W) × Pmax(a ∧W)

which, on using Equations 6.7 and 6.8, simpli�es to:

1

Pr(W) × ∑
a∈A(Q)

max
i
Pr(π−1(1) = i , a ∧W)

Since Pr(W) is a constant, independent ofQ, we have:

ML Formulation 2 (Next Votes) Given b,W, �nd the vote multisetQ, ∣Q∣ = b, that maximizes

∑
a∈A(Q)

max
i
Pr(π−1(1) = i , a ∧W) (6.9)

Let score(Q) be the value in Equation 6.9. We now have an exhaustive strategy to determine
the best multiset Q: compute score(⋅) for all possible multisets of size b, and then choose the mul-
tiset with the highest score. Although this strategy is the optimal feasible solution to the Next Votes

Problem, it is also computationally infeasible, since a single iteration of ML itself requires enumer-

ation of all n! permutations of the items in I . Additionally, knowledge of worker error probability
e is required for ML vote selection. �is leads us to develop our own vote selection and evaluation
framework enabling more e�cient heuristics.

6.3.2 Computational Complexity

As in the Judgment Problem, the Next Votes Problem also turns out to be NP-Hard, while the com-

putation of the probabilities involved also turns out to be#P-Hard. While the proofs use reductions

from similar problems, the details are quite di�erent.

Hardness of the Next Votes Problem: We �rst show that the ML formulation for the Next Votes

Problem is NP-Hard, implying that �nding the optimal set of next votes to request is intractable.
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�eorem 6.3.2 (Hardness of Next Votes) Finding the vote multisetQ that maximizes

∑
a∈A(Q)

max
i
Pr(π−1(1) = i , a ∧W)

is NP-Hard, even for a single vote.

Proof 6.3.3 (Sketch) Our proof for the Next Votes problem uses a reduction from the same NP-Hard
problem described in Section 6.2.3, i.e., determining Kemeny winners.

We are given a graph G where we wish to �nd a Kemeny winner. We add an extra vertex votes
to this graph to create a new graph, G′, where votes does not have any incoming or outgoing arcs.
By de�nition, votes is a Kemeny winner in G′, since trivially, votes can be placed anywhere in the
permutation without changing the number of arcs that are respected. �erefore, there are at least two
Kemeny winners in G′. Recall, however, that our goal is to return a Kemeny winner in G′, not in G.

Now, consider the solution to the Next Votes problem on G′, where an additional vote is requested.
As in the proof of �eorem 6.2.2, we set e to be very close to 0. It can be shown that the solution to the
Next Votes problem on G′ consists of two vertices, such that they are both Kemeny winners on G′. (Note
that votes may be one of the vertices, but at least one more vertex is returned.) �ese vertices (if they
are not votes) are also Kemeny winners in G. �us, the Kemeny winner determination problem on G
can be reduced to the Next Votes (with one vote) problem on G′.

To complete the proof, we need to show that the two vertices returned by the Next Votes problem are
both Kemeny winners. Let the two vertices be x , y. As before, recall that

Pr(π−1(1) = i , a ∧W) = ∑
π∶i wins

Pr(π)Pr(W ∧ a∣π)

Ignoring Pr(π), which is a constant, we have two terms:

F = max
i

∑
π∶i wins

Pr(W ∧ x > y∣π) +max
i

∑
π∶i wins

Pr(W ∧ y > x∣π)

Now consider Kemeny permutations of W. Let the set of Kemeny winners be S, and let the number of
Kemeny permutations beginning with each of the winners be s1 ≥ s2 ≥ . . . sn. We also let the probability
e be very close to 0 so that only Kemeny permutations form part of F. If we choose two Kemeny winners
as x and y, the expression F can be as large as (s1 + s2) × P, where P is the probability corresponding to
one Kemeny permutation. On the other hand, if both of x and y are not Kemeny winners, then we can
show that F < (s1 + s2) × P (since the constraint of x < y and y > x eliminates some non-zero number
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of permutations from the right hand side of the expression.) Now it remains to be seen if x may be a
Kemeny winner while y is not. Clearly, the �rst term can be as big as s1P. It remains to be seen if the
second term can be s2P. Since x is Kemeny, enforcing that y > x is going to discount all permutations
where max > x > y. �us the second term cannot be as big as s2P. �us both the vertices returned by
the Next Votes problem are Kemeny winners.

#P-Hardness of Probability Computations: We next show that computing Equation 6.9 is #P-

Hard.

�eorem 6.3.4 (#P-Hardness of Next Votes) Computing

∑
a∈A(Q)

max
i
Pr(π−1(1) = i , a ∧W)

is#P-Hard, even for aQ with a single vote.

Proof 6.3.5 (Sketch) Our proof uses a reduction from the#P-Hard problem of counting linear exten-
sions in a DAG. Consider a DAG G = (V ,A). We now add two additional vertices, x and y, such that
there is an arc from each of the vertices in G to x and to y giving a new graph G′ = (V ′,A′).

Consider the computation of

∑
a∈A(Q)

max
i
Pr(π−1(1) = i , a ∧W)

forQ = {{x , y}} for G′, which simpli�es to:

max
i

∑
π∶i wins

Pr(W ∧ (x > y)∣π) +max
i

∑
π∶i wins

Pr(W ∧ (y > x)∣π).

�e�rst of these two terms ismaximizedwhen x is themaximum, and the second term ismaximized
when y is the maximum. Both terms are identical, since x and y are identical, so we focus on only one
of the terms. Let F(e) = ∑π∶x wins Pr(W ∧ x > y∣π). Using a calculation similar to that used to derive
Equation 6.5, we have:

F(e) = (1 − e)∣A′∣ ×
∣A′∣
∑
i=0

ai(
e
1 − e

)∣A′∣−i .

We are interested in a∣A′∣, the number of permutations that correspond to linear extensions. Once again,
by repeating the trick in�eorem 6.2.4, we may use multiple values for e to generate di�erent graphs G′,
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and use the probability computation to derive many equations F(e) corresponding to di�erent e, and
then derive the value of a∣A′∣ using Lagrange’s interpolation.

�erefore, counting the number of linear extensions in G can be reduced to a polynomial number of
instances of computing the probability expression corresponding to the Next Votes problem.

6.3.3 Selection and Evaluation of Additional Votes

We next present a general framework to select and evaluate additional votes for the Next Votes Prob-

lem. Our approach is the following:

1. score all items with a scoring function score(⋅) using initial vote matrixW

2. select a batch of b votes to request

3. evaluate the newmatrixW ′

(initial votes inW and additional b votes) with a scoring function
f inal to predict the maximum item in I .

�is framework is displayed in more detail in Algorithm 6. In Step 1, we use a scoring function

score(⋅) to score each item, and in Step 3, we use a scoring function f inal(⋅) to evaluate the new
matrixW ′

to predict themaximum item in I . We brie�y discuss the choice of these scoring functions
when presenting experimental results later in Section 6.3.4. For now, we assume the use of a scoring

function in Step 1 which scores items proportional to the probability that they are themaximum item

in I . It is important to note that our general framework assumes no knowledge of worker accuracy,
unlike in ML vote selection. We next focus our attention upon how to select b additional votes (Step
2).

Heuristic Vote Selection Strategies: How should we select pairs of items for humanworkers to com-

pare, when given a vote budget of b votes? Since ML vote selection is computationally infeasible, we
consider four e�cient polynomial-time vote selection strategies: Paired, Max, Greedy, and Complete

Tournament strategies. For ease of explanation, we use the graph in Figure 6.4 as an example. Before

executing a vote selection strategy, we assume that each item has been scored by a scoring function

in Step 1 of the framework, denoted by score[⋅] in Algorithm 6. As a running example to explain our
strategies, we assume that our PageRank heuristic (Section 6.2.4) is used as the scoring function in

Step 1: item A has score 0.5, items B and E each have score 0.25, and items C ,D, and F have score 0.
Without loss of generality, assume that the �nal rank order of the items, before next vote selection, is

(A, B, E ,C ,D, F).
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Algorithm 6: General Vote Selection Framework

Data: n items, vote matrixW , budget b
Result: ans = predicted maximum item
// Step 1

compute score score[⋅] for all items using function score;
initialize multisetQ ;
sort all items by score[⋅], store item indices in index[⋅] ;
// Step 2

select b votes forQ using a vote selection strategy;
submit batchQ;
updateW with new votes from workers;

// Step 3

compute �nal score f inal[⋅] for all items using function f inal ;
ans ← argmaxi f inal[i]

�e �rst strategy we consider is Paired vote selection (PAIR). In this strategy, pairs of items are

selected greedily, such that no item is included in more than one of the selected pairs. For example,

with a budget of b = 2, the strategy asks human workers to compare the rank 1 and rank 2 items,
and the rank 3 and rank 4 items, where rank is determined by the scoring function from Step 1 in

Algorithm 6. �e idea behind this strategy is to restrict each item to be involved in at most one of

the additional votes, thus distributing the b votes among the largest possible set of items. �is can
be anticipated to perform well when there are many items with similar scores, e.g., when there are

many items in the initial vote graphGv which have equally high chances of being themaximum item.

Considering the example in Figure 6.4, for b = 2, this strategy requests the votes (A, B) and (E ,C).
�e second strategy we consider is Max vote selection (MAX). In this strategy, human workers

are asked to compare the top-ranked item against other items greedily. For example, with a budget of

b = 2, this strategy asks human workers to compare the rank 1 and rank 2 items, and the rank 1 and
rank 3 items, where rank is determined by the scoring function in Step 1 in Algorithm 6. Considering

again the example in Figure 6.4, for b = 2, this strategy requests the votes (A, B) and (A, E).
�e third strategy we consider is Greedy vote selection (GREEDY). In this strategy, all possible

comparisons (unordered item pairs) are weighted by the product of the scores of the two items, where

the scores are determined in Step 1 ofAlgorithm6. In otherwords, a distribution is constructed across

all possible item pairs, with higher weights assigned to item pairs involving high scoring items (which

are more likely to be the maximum item in I). A�er weighting all possible item pairs, this strategy
submits the b highest weight pairs for human comparison. Considering the example in Figure 6.4,
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Figure 6.4: How should we select additional votes to request?

item pairs (A, B) and (A, E) has weight 0.125, (B, E) has weight 0.0625, and all other pairs have
weight 0. For a budget b = 2, this strategy requests the votes (A, B) and (A, E).

�e fourth strategy we consider is Complete Tournament vote selection (COMPLETE). In this

strategy, we construct a single round-robin tournament among the K items with the highest scores
from Step 1 of Algorithm 6, where K is the largest number such that K∗(K+1)

2
≤ b. In a single round-

robin tournament, each of the K items is compared against every other exactly once. For the remain-
ing r = b − K∗(K+1)

2
votes, we consider all item pairs containing the (K + 1)st (largest scoring) item

and one of the �rst K items, and weight each of these K item pairs by the product of the scores of the
two items (as we did with Greedy vote selection). We then select the r item pairs with highest weight.

�e idea behind the Complete Tournament strategy is that a round-robin tournament will likely

determine the largest item among the set of K items. If the set of K items contains the true max,
this strategy can be anticipated to perform well. Regarding the selection of the remaining votes, the

strategy can be thought of as augmenting the K item tournament to become an incomplete K+1 item
tournament, where the remaining votes are selected greedily to best determine if the (K + 1)st item
can possibly be the maximum item in I . Considering the example in Figure 6.4, for b = 2, there is a
2-item tournament among items A and B and vote (A, B) is requested. �en, for the remaining vote,
the strategy greedily scores item pairs which contain both the next highest ranked item not in the

tournament, item E, and one of the initial 2 items. item pair (A, E) will be scored 0.125 and (B, E)
will be scored 0.0625, so the second vote requested is (A, E).
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Figure 6.5: Precision at 1 versus number of initial votes. 1 additional vote, 7 items, e=0.25.

6.3.4 Experiments

Which of our four vote selection heuristics (PAIR,MAX, GREEDY, or COMPLETE) is the best strat-

egy? We now describe a set of experiments measuring the prediction performance of our heuristics

for various sets of parameters. When evaluating our vote selection strategies, we utilized a uniform

vote sampling procedure, described previously in Section 6.2.5, to generate an initial vote matrixW .
�en, in Step 1 of our vote selection framework (Algorithm 6), we adopted our PageRank heuris-

tic (Section 6.2.4) as our scoring function score(⋅) to score each item in I . In Step 2, we executed
each of our vote selection strategies using these scores. In Step 3, we used our PageRank heuristic

as our scoring function f inal(⋅) to score each item in the new matrix W ′

(composed of both the

initial votes in vote matrixW and the b requested additional votes), and generate �nal predictions
for the maximum item in I . We performed several experiments contrasting prediction performance
of PageRank versus other possible scoring functions and found PageRank to be superior to the other

functions. Hence, we selected PageRank as the scoring function for both Step 1 and Step 3 of our vote

selection framework.

• ML vote selection outperforms heuristic strategies when results are evaluated with ML

scoring.

• However, when ML vote selection is evaluated with PageRank (e.g., like the heuristics),

prediction performances of all methods are similar.
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Figure 6.6: Precision at 1 versus number of additional votes (le�). Incremental Gain (P@1) of each vote relative

to a 0 additional votes baseline (right). 100 items, e=0.05, 200 initial votes.

For a �rst experiment, we compare the prediction performance (Precision at 1) of our four vote

selection heuristics (and random initial vote selection (RAND)) against the “optimal” strategy, i.e.,

the Maximum Likelihood (ML) vote selection procedure described in Section 6.3.1. Recall that ML

can be used in two places: when selecting additional votes (as in Section 6.3.1), and when predicting

the max given the initial plus additional votes (e.g., ML evaluation in Section 6.2.2). We use ML-ML

to refer to using ML for both tasks, this gives the best possible strategy. To gain additional insights,

we also consider ML-PR, a strategy where ML is used to select the additional votes, and PageRank

is used to select the winner. Since ML is computationally very expensive, for this experiment we

consider a small problem: select one additional vote given a set of 50 (2.5x Edge Coverage) to 200
initial votes (10x Edge Coverage) among a set of 7 items, e = 0.25.
Our experimental results are displayed in Figure 6.5. First, as expected, ML-ML has the best

performance. Clearly, ML-ML is doing a better job at selecting the additional vote and in selecting

the winner. Of course, keep inmind thatML-ML is not feasible inmost scenarios, and it also requires

knowledge of the worker error rate e. Nevertheless, the gap betweenML-ML and the other strategies
indicates there is potential room for future improvement beyond the heuristics we have developed.

Second, we observe in Figure 6.5 that all other strategies, including ML-PR, perform similarly.

�e relative performance of ML-PR indicates that the gain achieved by ML-ML is due to its better

prediction of the winner, as opposed to its choice for the next vote. In hindsight, this result is not

surprising, since the selection of a single vote cannot be expected to have a large impact. (We will

observe larger impacts when we select multiple additional votes.) �e results also demonstrate that

our vote selection heuristics show promise, since they seem to be doing equally well as ML, and since

they o�en perform slightly better than RAND, at least for the selection of a single next vote.
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To evaluate our heuristics in larger scenarios, we conducted a series of experiments, and the

results of some of those are summarized in Figures 6.6, 6.7, and 6.8(le�). To begin, we summarize

some of the general trends that can be observed in these �gures.

General observations regarding all strategies:

• As the number of additional votes increases, prediction performance increases.

• As the number of additional votes increases, the gain from additional votes decreases

(though the decrease is not very dramatic).

• As worker accuracy increases, prediction performance increases.
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• As worker accuracy increases, the gain from additional votes increases.

We only explain the graph in Figure 6.6(right), since the others are self-explanatory. In this graph,

the vertical axis shows the incremental P@1 gain at b additional votes, de�ned as (P@1 with b addi-
tional votes - P@1 with b − 1 additional votes) / (P@1 with 0 additional votes). As we can see, the
information provided by additional votes is more valuable when there are fewer initial votes (second

bullet above).

�eComplete Tournament andGreedy strategies are signi�cantly better than theMax andPaired

strategies.

We can also use Figures 6.6, 6.7 and 6.8(le�) to compare our heuristics. First, notice that the

di�erence between heuristics can be very signi�cant. For instance, in Figure 6.7(le�) we see that the

Paired (PAIR) strategy provides a 0.7x P@1 gain for 5 additional votes (100 initial votes, e = 0.05),
while the Complete Tournament (COMPLETE) strategy provides a 1.5x P@1 gain, where wemeasure

P@1 gain as (P@1 with b votes - P@1 with 0 votes) / (P@1 with 0 votes). Second, we observe that the
Complete Tournament and Greedy (GREEDY) vote selection strategies consistently outperform the

Max (MAX) and Paired strategies in all scenarios. In particular, in Figure 6.6(le�), we observe that

the prediction performances of the Complete Tournament and Greedy strategies steadily improve

with additional votes, while the Max and Paired strategies taper o�. �is indicates that when a larger

vote budget b is available for additional votes, the additional votes will be better utilized by the more
sophisticated strategies (Complete Tournament and Greedy) as compared to the simpler strategies

(Max and Paired).

Given only votes between items of the same type:

• �e value of additional votes is greater when it is more di�cult to predict the maximum

item.

• �e Complete Tournament strategy is the best strategy.

In our scenarios so far, the Complete Tournament and Greedy strategies perform similarly. To

di�erentiate between the two, we explored di�erentways inwhich the initial votes could be generated.
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number of initial votes. 100 items, e=0.05, 15 additional votes. 1 type (le�), 20 types (right).

(Recall that up to this point we have been randomly selecting the pairs of items that are compared by

the initial votes.) We next discuss one of these possible di�erent vote generation schemes. Suppose

that our items are of di�erent types (e.g., so�cover books, hardcover books, e-books, etc.), and for

some reason initial votes between items of the same type are much more likely than across types.

For example, it is more likely that two e-books have been compared, rather than one e-book and one

hard-cover book. (�e situation is analogous to sporting events, where intra-league games are more

likely than inter-league games.)

For our experiment, we consider an extreme instance where there are no initial votes involving
items of di�erent types. In particular, we divide our set I of n items into t disjoint item types. When
votes are sampled for the initial vote matrixW , sampling of votes is only permitted between items of
the same type. Keep in mind that predicting the maximum item in I is more di�cult when there are
more item types because each item type will likely have a leader (greatest item), each of these leaders

will have on average similar probabilities of being the maximum item (since item type groups are

likely of similar size), and the initial vote matrixW provides no information regarding comparisons

between these leaders.

We perform experiments for di�erent values of t (e.g., di�erent numbers of initial item types),
Figure 6.9 displays Precision at 1 gain relative to a 0 additional votes baseline for t = 1 and t = 20.
We observe that the P@1 gain increases for the Complete Tournament and Greedy strategies as t
increases, implying that the value of additional votes is greater when it is more di�cult to predict the

maximum item from the initial vote matrix. �at is, in the harder problem instances (larger t), the
additional votes play a more critical role in comparing the item type leaders. More importantly, the

Complete Tournament strategy outperforms the Greedy strategy (and the others too) in this more
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challenging scenario.

Finally, we conduct a more in-depth study of the Complete Tournament vote selection strategy

and examine the bene�t of vote redundancy. Given a limited budget, should the Complete Tour-

nament strategy select fewer top items and propose more redundant votes, or should it select more

items and ask fewer votes per pair? For instance, the Complete Tournmament strategy could select

the top three items and submit four votes for each pair, for a total of 12 additional votes. Or it could

select the top 4 items, and for each of the possible 6 comparisons, request 2 votes (for the same 12

total additional votes). What is the best approach?

Figure 6.8(right) displays the Precision at 1 of theComplete Tournament strategy for 10 additional

votes, where the votes are uniformly and randomly distributed among the 5, 10, or 20 items in I with
highest score (as provided in Step 1 of Algorithm 6). We �nd that distributing the 10 votes among

5 items, where each item is compared against every other, leads to the best prediction performance.

�at is, we do not observe any bene�t for distributing votes among a larger set of itemswhen using the

Complete Tournament strategy. �e strategy performs well only when additional votes provide the

ability to rank the items in a set. Assuming that votes are distributed randomly among item pairs, the

Complete Tournament strategy is able to order the set only when most items in the set are compared

against each other. Note that Figure 6.8(right) is only an illustration of the interaction between the

number of top items selected, and the redundancy of votes. �e results will vary depending upon

worker accuracy and the vote budget b.

6.4 RelatedWork

As far aswe know, we are the �rst to address theNextVotes Problem, and there is no relevant literature

that directly addresses this problem. �us, in this section, we review work related to the Judgment

Problem. �e algorithms and heuristics we presented for the Judgment Problem are primarily drawn

from three diverse topic areas: paired comparisons, social choice, and ranking.

�e Judgment Problem has its roots in the paired comparisons problem, �rst studied by statisti-
cians decades ago [70, 116]. In the paired comparisons problem, given a set of pairwise observations

regarding a set of items, it is desired to obtain a ranking of the items. In contrast, in the Judgment

Problem, we are interested in predicting the maximum item.

�e Judgment Problem also draws upon classical work in the economic and social choice litera-

ture regardingWinner Determination in elections [146, 193]. Numerous voting rules have been used
(Borda, Condorcet, Dodgson, etc.) to determine winners in elections [167]. �e voting rules most
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closely related to our work are the Kemeny rule [115] and Slater rule [172]. A Kemeny permutation
minimizes the total number of pairwise inconsistencies among all votes, whereas a Slater permuta-
tionminimizes the total number of pairwise inconsistencies in the majority-vote graph [57]. An item
is considered a Kemeny winner or Slater winner if it is the greatest item in a Kemeny permutation or
Slater permutation.

We believe our ML formulation is more principled than these voting rules, since ML aggregates

information across all possible permutations. For example, in the graph of Figure 6.1, while C and D
are both admissible solutions for the Kemeny rule, ML returns D as an answer, since D has almost
one and a half more times the probability of being the maximum item compared to C. No prior work
about the Judgment Problem, to our knowledge, uses the same approach as our ML formulation.

In the recent social choice literature, the research most closely related to ours has been work by

Conitzer et al. regarding Kemeny permutations [60]. Conitzer has studied various voting rules and

determined for which of them there exist voter error models where the rules are ML estimators [61].

In our study, we focused upon the opposite question: for a speci�c voter error model, we presented

both Maximum Likelihood, as well as heuristic solutions, to predict the winner.

Our work is also related to research in the theory community regarding ranking in the presence

of errors [29, 117] and noisy computation [30, 84]. Both Kenyon et al. and Ailon et al. present ran-

domized polynomial-time algorithms for feedback arc set in tournament graphs. �eir algorithms

are intended to approximate the optimal permutation, whereas we seek to predict the optimal win-

ner. Feige et al. and Ajtai et al. present algorithms to solve a variety of problems, including the Max

Problem, but their scenarios involve di�erent comparison models or error models than ours.

6.5 Conclusion

In this chapter, we studied the problem of identifying the maximum item in a data set using hu-

mans. Using humans to identify the maximum can be quite challenging, and there are many issues

to consider. �e main reason for the complexity, as we have seen, is that our underlying comparison

operation may give an incorrect answer, or it may even not complete. �us, we need to decide which

is the “most likely” max (Judgment Problem), and which additional votes to request to improve our

answer (Next Votes Problem).

Our results show that solving either one of these problems optimally is very hard, but fortunately

we have proposed e�ective heuristics that do well. Among the heuristics, we observed signi�cant

di�erences in their predictive ability, indicating that it is very important to carefully select a good
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heuristic. Our results indicate that in many cases (but not all) our proposed PageRank heuristic is

the best for the Judgment Problem, while the Complete Tournament heuristic is the best for the Next

Votes Problem.

Our results are based on a relatively simple model where item comparisons are pairwise, and

worker errors are independent. Of course, in a real crowdsourcing system these assumptions may

not hold. Yetwe believe it is important to know that evenwith the simplemodel, the optimal strategies

for the Judgment Problem and Next Votes Problem are NP-Hard. Furthermore, our heuristics can

be used even in more complex scenarios, since they do not depend on the evaluation model.

In the next chapter, we design algorithms for crowd-powered categorization. Unlike the previous

chapters, we �nd that categorization is challenging even when workers do not make mistakes.
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Algorithm 4: Categorization

7.1 Introduction

In this chapter, we design algorithms for crowd-powered categorization1. Given a data set of items,

we want to to categorize each item into classes in a hierarchical taxonomy. As an example, we may

have a data set of images, and we may want to categorize each image into the taxonomy shown in

Figure 7.1. If the image is that of a Nissan car, but the model is not identi�able, the most suitable

category is “Nissan”. If the model is identi�able as well, say, Sentra, then the most suitable category

would be “Sentra”.

Our goal is to ascertain the most suitable category (which could be anywhere in the taxonomy)

by asking the minimum number of categorization questions to humans. �e questions we ask are of

the form “Is this a/an X?”, where X is a node in the taxonomy. As an example, we may pick X to be

“Vehicle”, and we can ask a human for a speci�c item, “Is this a Vehicle?”

Furthermore, in this chapter, we make the assumption that humans do not make mistakes while

answering questions. While this is a major assumption, we note that we can leverage optimized �lter-

ing strategies (Chapters 3 and 4) to askmultiple humans the same question to ensure a certain degree

of accuracy, while not incurring a high cost. Additionally, as we show in this chapter, categorization

is computationally challenging even without considering human mistakes.

Since humans do not make mistakes while answering categorization questions, in the Nissan car

example above, receiving a YES answer to “Is this aCar?” says that the most suitable category, in this

1
�is chapter is a simpli�ed version of our paper [155], published at VLDB 2011, written jointly with Anish Das Sarma,

Hector Garcia-Molina, Neoklis Polyzotis, and Jennifer Widom. �e paper, studies human-assisted graph search, a gener-

alization of categorization.

142



www.manaraa.com

CHAPTER 7. ALGORITHM 4: CATEGORIZATION 143

vehicle

car

nissan honda mercedes

sentramaxima
Figure 7.1: Categorization

case Nissan, is “reachable” from the category Car via a directed path in the taxonomy of Figure 7.1.

Also, asking a question at the root, Vehicle, (a general question) gives a YES answer while asking a

question at a leaf,Maxima (a speci�c question), gives a NO answer. If the image is that of a car, but

the model is not identi�able, then asking a question atVehicle andCarwill yield YES, while all other

questions will receive a NO answer.

�ere are several interesting properties that make categorization a nontrivial problem. First, the

answers to di�erent categorization questions (i.e., questions of the form “Is this anX?”)may be corre-

lated, e.g., if the answer to the categorization question corresponding to (or at) a node in the taxonomy

is YES, then the answer to a categorization question corresponding to an ancestor of that node will

be YES as well. �erefore, it is possible to identify the target categories without asking categorization

questions for all nodes in the graph. Second, the location of a node a�ects the amount of information

that can be obtained from the corresponding categorization question. Asking categorization ques-

tions at nodes close to leaves (very speci�c questions) are more likely to receive a negative answer,
while asking questions at nodes close to roots (very general questions) are more likely to receive pos-
itive answers. Asking categorization questions at the “middle” nodes may give more information. In

this sense, the categorization problem is similar to the 20 questions game2, where very speci�c or

very general questions do not help.

An additional challenge stems from howwe use humans. Ideally, we would like to issue one ques-

tion at a time, selecting the next categorization question based on the answers to previous questions.

2
20 questions is a two player game, where one player thinks of an object, person or place and the other player has to

guess the identity of that item by asking the �rst player up to 20 YES/NO questions.
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However, since latencies of crowdsourcing marketplaces can be large, we may prefer to issue several

questions in parallel in one phase, whose answers are then combined to solve the task at hand. �e

challenge, therefore, is to reason about the possible answers for categorization questions at di�erent

nodes in the graph, and to select the set of questions in order to infer as much information as possible

about the target categories across all possibilities. In this chapter, we focus on optimizing the set of
questions asked in a single phase. In Section 7.6 (Experiments) we brie�y look at a hybrid approach,

where we ask some questions in one phase, examine the results, and then ask additional questions in

subsequent phases.

Note that in Chapter 3, we discussed the generalization of �ltering tomultiple categories (beyond

boolean), e.g., �ltering an item based on colors—red, blue, green. Here, unlike that generalization,

the categories are inter-related, i.e., �nding out that an item falls under the Nissan car category auto-

matically implies that the item falls under the Vehicle category. We leverage these inter-relationships

between categorization questions to select questions that give us the maximum amount of “informa-

tion” possible. Furthermore, unlike that generalization, the number of categories in this case can be

very large, even as many as millions of nodes.

7.1.1 Outline of Chapter

Here is the outline for this chapter:

● Wedelineate three orthogonal problemdimensions of the categorization problem. (Section 7.2)
● We formally de�ne the categorization problem. (Section 7.3)
● We present algorithms and complexity results for the problem for the three dimensions identi-
�ed in Section 7.2. We show that while the general problem is computationally hard, the more

constrained variants are tractable. (Sections 7.4 and 7.5)

● We study the performance of our algorithms versus others for webpage categorization. (Sec-
tion 7.6)

7.2 Dimensions

We will study variants of the categorization problem along three orthogonal dimensions.

Dimension 1: Single/Multi.

�e �rst dimension controls the characteristics of the size of the target set of categories. If it is

known that there is a single (best) target category, then we will use the Single variant, that constraints

the target set to be a single node (i.e., a single category), else we will have to use the Multi variant.
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For instance, an image that contains a Honda car as well as a Nissan car, may have to be categorized

under both Nissan andHonda.

Dimension 2: Bounded/Unlimited.

�e second dimension controls the number of questions that can be asked in parallel in one

phase. In the Bounded case, we are given a budget b for the total number of questions that can be
asked and we want to compute a node set Q, ∣Q∣≤b, at which to ask categorization questions such
that we narrow down the candidates for the target categories as much as possible. �eUnlimited case

does not put a bound on the number of questions. In this case, we want to compute the minimal set

of nodes to ask questions such that we precisely identify the target categories, all in one phase.

�e Bounded case is relevant when have a cost constraint for amount of questions asked in one

phase, and we want to minimize the uncertainty in the identities of the target categories, while the

Unlimited case is relevant when cost is not as important as latency (that is, we must complete cate-

gorization in one phase).

Dimension 3: DAG/Downward-Forest.

�e third dimension controls the type of taxonomy onwhich we perform the search for the target

categories. We consider a general DAG, as well as a “downward forest” structure, where there are

several trees with edges directed from parents to children.

Note that categorization is, in fact, an instance of a more general problem that we call HumanGS,

which has many more applications beyond categorization. �ese applications, as well as consider-

ation of additional dimensions beyond those relevant for categorization may be found in [155]. All

of these applications involve humans in the loop in some form (either as crowd workers, or as users

interacting with the system).

7.2.1 Summary of Results and Outline

Table 7.1 summarizes our results on the complexity of the examined categorization variants. �e

details of the analysis and the corresponding algorithms are given in the following sections. �e pre-

sentation is organized in two sections based onDimension 1: Single is covered in Section 4, andMulti

is covered in Section 5. Each row in the table corresponds to a subsection in the corresponding sec-

tion. In each case, we �rst provide a formal de�nition of the corresponding categorization problem,

followed by the complexity analysis for the two graph structures.
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DAG Downward-Forest

Single
Bounded NP-Complete(n, b), O((2n)bn2b) O(n log n)
Unlimited min{log2 o, log n}× Single-Bounded O(1)

Multi
Bounded NP-Hard(n, b), ΣP2 (n, b) O(lb2n6)
Unlimited O(1)

Table 7.1: Summary of Results: b is the budget of questions, n = ∣V ∣, l is the arity of the tree or forest, and o is
the size of the optimalQ.

7.3 �e Categorization Problem

In categorization, like in other crowd-powered algorithms, we select a setQ of questions to ask hu-
mans, all in one phase. A�er human workers provide the answers to these questions, we will be able

to infer either the target node(s) (i.e., categories) or a superset of the target nodes. We may then ask

additional questions in subsequent phases until the target nodes are found. We focus on optimizing

a single phase. We now describe the problem more formally.

We are given the taxonomy as a directed acyclic graph G = (V , E). We use n ≡ ∣V ∣ to denote the
number of nodes (i.e., categories) in the graph. Note that we rede�ne n here to mean the number
of nodes in the taxonomy rather than the number of items, as we have used in previous sections. A

node v ∈ V is reachable from another node u ∈ V if there exists a directed path from u to v. �e
reachable set of u, denoted rset(u), contains all nodes that are reachable from u, including u. For
instance, the reachable set of Nissan in Figure 7.1 is {Nissan, Maxima, Sentra}. �e preceding set of u,
denoted pset(u), contains all v ≠ u such that u ∈ rset(v). For instance, the preceding set of Nissan
in Figure 7.1 is {Vehicle, Car}. We say that u and v are unrelated if there is no directed path between
them, i.e., u ∉ pset(v) ∪ rset(v).
We assume that there is a node-setU∗ ⊆ V , termed the target set of categories or simply target set,

that comprises the target nodes (i.e., the individual target categories). �e target set must satisfy the
following property:

Independence Property: No two nodes in U∗ are related.

�is property holds in categorization: intuitively, if there are two nodes u and v ∈ U∗ such that u ≠ v
and u ∈ rset(v), then v can be discarded because u “subsumes” v. For instance, in Figure 7.1, if an
image falls under the ‘Vehicle’ category as well as the ‘Nissan’ category, then we would prefer to retain

just the ‘Nissan’ category in U∗ instead of ‘Vehicle’ because ‘Nissan’ subsumes ‘Vehicle’.

We can informally describe the categorization problem as computing a set of nodes {u1, . . . , ub}
such that the answers to the corresponding categorization questions at the set of nodes lead to the
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identi�cation of U∗. (Recall that a categorization question at a node u corresponds to the question
“Is this item of type u?”.) Each categorization question corresponds to a node in the graph, and hence
we interchangeably use “asking a question”, “asking a question at a node” and “asking a node”. Asking

a question is de�ned formally as follows.

De�nition 7.3.1 (Asking a Question q(u,U∗)) Asking aquestion at node u ∈ V, denoted asq(u,U∗),
returns YES if rset(u) ∩U∗ ≠ ∅, and NO otherwise.

In other words, q(u,U∗) returns YES i� a directed path starting at u reaches at least one node in
U∗. Note that u may itself be in the target set. Also note that for any U∗

1 and U∗
2 , U∗

1 ≠ U∗
2 , both of

which satisfy the independence property, there is some node at which asking a question would give

di�erent answers. (Consider u such that u ∈ U∗
1 and u ∉ U∗

2 . Either there is no v ∈ rset(u) present
in U∗

2 , in which case asking a question at u would give di�erent answers. Or, there is such a v ≠ u, in
which case asking a question at v would give di�erent answers.)
A solution to the categorization problem always exists, as we can identifyU∗ by asking questions

at every node inV . However, it is not necessary to ask questions at every node, as the following trivial
lemma illustrates.

Lemma 7.3.2 (DAG Property) If q(u,U∗) is YES, then q(v ,U∗) is YES for every v in pset(u). Con-
versely, if q(u,U∗) is NO then q(v ,U∗) is NO for every node v in rset(u).

LetQ ⊆ V be some set of nodes at which we ask categorization questions. In general, the answers
to these questions may not be su�cient to precisely identify U∗, since there may be other nodes

(not in U∗) for which the answers to the categorization questions asked would be the same even if

those nodeswere inU∗. We introduce the notion of a candidate set to capture the possibilities forU∗

based on questions on a node-setQ. �e candidate set, denoted as cand(Q,U∗), is the maximal set
of nodes that we cannot distinguish from U∗ based solely on the answers to questions at the nodes

inQ. In other words, the nodes in cand(Q,U∗) have the same reachability properties (with respect
to Q) as the nodes in U∗. For ∣Q∣ = 0, we have the trivial result that cand(Q,U∗) = V . We �rst
consider how asking a single question (i.e., ∣Q∣ = 1) allows us to restrict the contents of the candidate
set beyond V .
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�eorem 7.3.3 (One Question Pruning) Assume that we ask a single question at node u. �e candi-
date set is computed as follows, based on the answer and the variant of Single/Multi that the catego-
rization instance falls under.

cand({u},U∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V − rset(u) q({u},U∗) = NO

V − pset(u) q({u},U∗) = YES ∧Multi

rset(u) q({u},U∗) = YES ∧ Single

Proof 7.3.4 If we get a NO on asking a question at a node u, then none of rset(u) can be present in
cand({u},U∗), but any other node could be a target node, therefore cand({u},U∗) = V − rset(u).
Suppose we get YES, so a target node exists in rset(u). If there are one or more target nodes (∣U∗∣ ≥ 1,
as inMulti), the independence property implies that no target node can be present in pset(u). Hence,
cand({u},U∗) = V − pset(u). Furthermore, if we know that there exists a single target node, i.e.,
∣U∗∣ = 1, as in Single, then the candidate set is simply rset(u).

Given this base case of one question, we can compute cand(Q,U∗) for a general node-set Q as the
intersection of the candidate sets resulting from individual questions.

�eorem 7.3.5 A�er asking questions at all nodes in a node-setQ, we have:

cand(Q,U∗) = ⋂
u∈Q

cand({u},U∗)

.

Proof 7.3.6 Let C = ⋂u∈Q cand({u},U∗). If x /∈ cand({u},U∗) for nodes x ∈ V and u ∈ Q, then it is
easy to see that x cannot be present in cand(Q,U∗). Now consider a node x ∈ C. For theMulti variant,
consider a set U that contains x, no ancestors or descendants of x, as well as all other nodes in C that
do not have descendants in C. Note that U satis�es the independence property. If U were the target set,
it would give rise to the same answers to questions at Q as U∗. �us, x could be in U∗ and has to be
present in cand(Q,U∗). For the Single variant, consider a set U = {x}. U would give rise to the same
answers to questions atQ as U∗. �us, x could be in U∗ and has to be present in cand(Q,U∗).

�us, each questionmay enable some additional pruning of the candidate set, and the order in which

questions are asked does not a�ect the �nal result. As an example, let us consider again the catego-

rization problem illustrated in Figure 7.1. Suppose that the single target node is Maxima, and as-
sume that we ask questions atQ = {Car,Nissan,Mercedes}. Clearly, the questions at Car and Nissan
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yield YES, whereas the question at Mercedes yields NO. Based on these answers, we can assert that
cand(Q,U∗) = {Nissan,Maxima, Sentra}. �e candidate set contains the target node as well as two
“false positives” (Nissan and Sentra). PickingQ so as to minimize the number of false positives is the
goal of the algorithms that we present later.

Since we are operating in a single phase setting, we are interested in minimizing the size of

the candidate set in the worst case. Given that U∗ is unknown, we may use the maximum size of

cand(Q,U∗) (under all admissible possibilities for U∗) as an indication of the worst-case uncer-

tainty that remains a�er asking the questions inQ. We use wcase(Q) to denote this worst-case size.
A natural objective is to selectQ so that wcase(Q) is minimized. We de�ne wcase formally in Sec-
tion 7.4 for Single and in Section 7.5 forMulti.

7.4 Single Target Category

In the Single problem, we have the constraint that there is a single target node, i.e., ∣U∗∣ = 1. Let this
node beu∗. To simplify notation forSingle, we use cand(Q, u∗), instead of cand(Q, {u∗}), to denote
the candidate set a�er questions have been asked at the node setQ, and we use q(u, u∗), instead of
q(u, {u∗}), to denote the answer to asking a question at u. Recall that as in �eorem 7.3.3, asking a
question at u for the Single problem tells us whether the candidate set cand({u}, u∗) is rset(u) (if
the answer is YES) or V − rset(u) (if the answer is NO).
Given a node setQ at which we ask categorization questions, we de�ne the worst-case candidate

set size as

wcase(Q) = max
u i∈V

∣cand(Q, ui)∣ (7.1)

In other words, wcase computes the size of the largest candidate set when the target node could be

any node in V .

7.4.1 Single-Bounded

In theSingle-Bounded variantwe have a �xed budget b on the number of questions thatmay be asked,
i.e., the size of Q cannot exceed b. �e goal is to pick the set of nodes Q such that the worst-case
candidate set size is minimized.

De�nition 7.4.1 (Single-Bounded) (Bounded Search for a Single target node.) Given a parameter b
and the restriction that ∣U∗∣ = 1, �nd a set Q of nodes Q ⊆ V to ask questions such that ∣Q∣ = b and
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wcase(Q) is minimized.

�e following subsections examine the complexity of the problemunder the di�erent possibilities

for the structure of G, i.e., general DAG and downward-forest.

Single-Bounded: DAG

Webegin with the auxiliary result thatwcase(Q) can be computed in time polynomial in the number
of nodes in the graph. �is result is used later to bound the complexity of Single-Bounded.

�eorem 7.4.2 (Computation of Worst Case) Given anode setQ atwhich questions are asked,wcase(Q)
can be computed in O(n2 ⋅ b), where n = ∣V ∣.

Proof 7.4.3 In time O(n2), for all pairs of nodes a and b inG, we can compute andmaintain whether or
not a ∈ rset(b). Let u∗ be the target node in the graph. In time O(∣Q∣), we can compute the answers to
each of the questions asked at the nodes inQ. Subsequently, we can compute cand(Q, u∗) in O(n ⋅ ∣Q∣)
by checking the following for every node u: if there is a node in u′ ∈ rset(u), u ≠ u′ such that u′ ∈ Q
and u′ returned YES, or if there is a node u ∈ pset(u), such that u ∈ Q and u′ returned NO, then
u ∉ cand(Q, u∗), else u ∈ cand(Q, u∗). We can compute wcase by repeating the above procedure for
every possible u∗, taking a total of O(n2 ⋅ ∣Q∣) time.

�e main idea above is to �rst compute all pairs (a, b) in V × V such that b ∈ rset(a) and then use
this information to compute cand(Q, u∗) for every possibility of u∗. Using the result above, we can
de�ne a brute-force approach to solving Single-Bounded, by considering all possible combinations

ofQ with size at most b.

Lemma 7.4.4 (Brute-force Solution) �e optimal solution of Single-Bounded for any DAG can be
found in O(nb ⋅ n2 ⋅ b), where n is the number of nodes in V.

Proof 7.4.5 We �nd wcase for each choice of (nb) nodes at which questions are asked. �e choice for
which the worst-case candidate set is the smallest is the optimal solution.

Clearly, we can solve Single-Bounded optimally in PTIME if b is bounded by a constant. However,
the appearance of b in the exponent hints at the hardness of the problem in the general case. Indeed,
the following result shows thatSingle-Bounded is computationally hard. �eproof shows a reduction

to Single-Bounded from the NP-hard max-cover problem [133].
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Figure 7.2: Hardness Proof for Single-Bounded

�eorem 7.4.6 Single-Bounded cannot be solved in polynomial time unless P = NP.

Proof 7.4.7 We prove that the decision version of the problem is NP-complete, stated as follows: Given
a budget b and a positive integer m, is there a node-set Q to ask questions such that wcase(Q) ≤ m?
We refer to this problem as Single-Bounded-Decision.

We use a reduction from the NP-completemax-cover problem [133]. In this problem, the objective
is to pick a certain number of sets such that they cover as many items as possible. (A set containing a
given item is said to cover that item.) Let there be m items and n sets in the max cover problem. We
need to select b sets such that the maximum number of items are covered.

We reduce the max-cover problem to Single-Bounded-Decision with the following directed acyclic
graph. (An instance of the graph is shown in Figure 7.2.) Consider nodes arranged in two layers. In
the �rst layer, we have one node corresponding to each set si in the max cover problem. In the second
layer, we have a node corresponding to each item ti in the max-cover problem. �ere is a directed edge
from the node corresponding to set si to the node corresponding to the item t j i� item t j is present in
set si . In addition, we include n +m singleton nodes (nodes with no incoming or outgoing edges) in the
DAG. Subsequently, we call Single-Bounded on this DAG with a budget of b questions. �e worst-case
candidate set corresponds to each of the questions inQ receiving NO answers. To see this, note that if we
get a YES answer to a question asked at any of the nodes corresponding to sets, the candidate set is ≤ m.
Receiving a YES answer to any question asked at the nodes corresponding to items or singletons will give
a candidate set of 1. However, if we get all NO answers, the number of nodes remaining in the worst-case
candidate set is at least m + n, even if all the nodes corresponding to items as well as b from the nodes
corresponding to sets and singletons are eliminated from the candidate set. Additionally, the solution
of the Single-Bounded problem, i.e., Q, will only contain nodes corresponding to sets, because those
nodes exclude the maximum number of nodes from the candidate set, in the worst case. �us, Single-
Bounded picks nodes corresponding to sets such that the maximum number of nodes corresponding to
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items are covered. �erefore, the solution to Single-Bounded corresponds to a max-cover. Conversely,
every solution of the max-cover problem can be written as a solution for Single-Bounded.

In addition, given that we can compute wcase(Q) in PTIME (see �eorem 7.4.2), a solution for
Single-Bounded-Decision can be veri�ed in PTIME.�us, Single-Bounded-Decision on DAGs is in
NP and is NP-Complete.

Even though the general problem is intractable, it may be possible to �nd e�cient solutions by lever-

aging speci�c characteristics of the input, and in particular of the DAGG. �e following subsections
examine this hypothesis for downward-forests.

Single-Bounded: Downward-Forest

In the downward-forest case, G is a forest of directed trees with edges from parents to children nodes
(see also Section 7.2.)

We begin by showing that Single-Bounded on a downward-forest can be reduced to Single-

Bounded on a downward-tree (a tree with edges from parents to children), by attaching a virtual

root node that links all the trees in the forest. �e following theorem is proved by showing that the

optimal solution for the resulting tree gives a solution to the forest withwcase at most one more than

optimal.

�eorem 7.4.8 (Downward-Forest⇒ Tree) Given a downward-forest GF , there exists a downward-
tree GT , such that a solutionQT to categorization onGT gives a node setQ′T of GF such thatwcase(Q′T)
≤ wcase(Q) + 1, for any node setQ of GF where ∣Q∣, ∣Q′T ∣ ≤ b.

Proof 7.4.9 We augment the downward-forest with a single root node such that there exists an edge
from the new root node to the root of each of the trees in the directed forest. Let the original forest be GF

and the new augmented tree (a downward-tree) be GT .
Let QT be an optimal selection of b nodes from GT at which questions are asked. We �rst convert

QT into Q′T such that there is no question asked at the root. (We delete the root from QT , if present.)
Since a question at the root has to return a YES answer, the worst-case candidate set at GT , denoted by
wcaseT , will be unchanged. We therefore have wcaseT(Q′T) = wcaseT(QT).

LetQF be the optimal solution on GF . If we select setQF as the questions to be asked at GT , we get
wcaseT(QT) ≤ wcaseT(QF), since QT gives the optimal worst-case candidate set for GT . Also, since
there is an addition of at most one node to the worst-case candidate set whenQF is used on GT instead
of GF ,wcaseT(QF) ≤ wcaseF(QF)+1, wherewcaseF is the worst case candidate set when the questions
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x
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Figure 7.3: Partition Example

are asked at the nodes in GF . Now, apply Q′T on GF . We then have wcaseF(Q′T) ≤ wcaseT(Q′T) =
wcaseT(QT) ≤ wcaseF(QF) + 1. �us, choosing the questions to minimize worst-case candidate set in
the tree gives the optimal worst-case candidate set for the forest plus at most one more node. We ignore
the additive factor of 1 in our calculations.

We can therefore focus on solving the Single-Bounded problem for a single downward-tree, instead

of a downward-forest, ignoring the additive constant of ≤ 1. We show that this problem is equivalent
to the partition problem [122], which admits e�cient solutions.

De�nition 7.4.10 (Partition Problem) Given an undirected tree, �nd b edges such that their deletion
minimizes the size of the largest connected component.

To show the equivalence, we �rst de�ne how a chosen set Q induces a partition of the tree into
connected components.

De�nition 7.4.11 (Partition on a Node Set) In a downward-tree, we recursively de�ne the partitions
on a node setQ, denoted P(Q), as the following:

● If x ∈ Q and none of x’s descendants are in Q, then the subtree under x (including x) is a
partition. (We call this partition the partition of x.)
● If x ∈ Q and some of x’s descendants are inQ, then the subtree under x (including x) excluding
all of the partitions of x’s descendants is a partition. (We call this partition the partition of x.)
● Whatever is le� a�er all the partitions are formed is a partition. (If x is the root of the remainder
of the tree, then the partition is called the partition of x.)
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We have exactly ∣Q∣ or ∣Q∣+ 1 partitions. As an example, consider Figure 7.3. Here there are three
partitions corresponding the node setQ = {y, z}, i.e., the partition of x, y and z.

Lemma 7.4.12 (Candidate Set Partition) Given questions asked at a node set Q, the candidate set
cand(Q, u∗) for any u∗ corresponds to one of the partitions from P(Q).

Proof 7.4.13 If u∗ ∈ partition p of x, then we prove that cand(Q, u∗) = p. First, we consider the case
when x ∈ Q. In this case, notice that the question at x returns a YES answer. Using �eorem 7.3.3, the
candidate set can be restricted to the subtree under x. �e only nodes ∈ Q at which the answer is YES
are those that are ancestors of x, but they do not change the candidate set. �ose nodes ∈ Q that are
descendants of x or unrelated to x all return NO, since there is no path from those nodes to the target
node u∗. Since all those nodes return NO, the subtrees under those nodes can be removed from the
candidate set. �us, the candidate set is precisely p.

If x ∉ Q, then x is the root of the directed tree. Here, once again, if we asked a question at x, we
would obtain a YES answer. �ose nodes ∈ Q that are descendants of x all return NO, since there is no
path from those nodes to the target node u∗. Since all those nodes return NO, the subtrees under those
nodes can be removed from the candidate set. �us, the candidate set is once again p.

�e previous result essentially establishes the equivalence between the two problems, as our goal is

to minimize wcase(Q), which is equivalent to the size of the largest partition that can be induced by
Q. Since the partition problem can be solved in PTIME, it follows directly that the same holds for
Single-Bounded on a downward-tree. �e following theorems formalize these observations.

�eorem 7.4.14 (Partition Problem Equivalence) �e problem of Single-Bounded on downward-
trees is equivalent to the partition problem.

Proof 7.4.15 As seen in Lemma 7.4.12, the candidate set on asking a question at any node corresponds
to one of the partitions induced by asking questions. �us, in order to minimize wcase, it is su�cient to
solve the partition problem on the downward-tree. �e size of the largest partition is the size of the worst
possible candidate set. Conversely, every instance of the partition problem can be cast as an instance of
the Single-Bounded problem for a downward-tree. �us, the two problems are equivalent.

Using a dynamic programming algorithm from [122] for the partition problem, we obtain the follow-

ing result for Single-Bounded:

�eorem 7.4.16 (Single-Bounded) �ere exists an algorithm with complexity O(n log n) that solves
Single-Bounded on a downward-forest.
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Proof 7.4.17 �e algorithm solves the equivalent partition problem on the downward-tree formed from
the downward-forest augmented with a root node. Reference [122] gives a dynamic programming algo-
rithm that �nds the minimal number of edges that need to be cut in order to achieve a certain partition
size in O(n). We run binary search over partition sizes in order to �nd the smallest partition size for
which the minimal number of edges to be cut is ≤ b.

7.4.2 Single-Unlimited

In the Single-Unlimited problem, we do not have a strict budget on the number of questions that can

be asked; instead, we want to �nd the smallest set of questionsQ such that the target node is uniquely
determined in the every case.

De�nition 7.4.18 (Single-Unlimited) (Unlimited Search for a single target node) Given that the tar-
get set ∣U∗∣ = 1, �nd the smallest setQ ⊆ V to ask questions such that wcase(Q) = 1.

First, we illustrate in the following example that the number of questions that are required to ensure

that wcase(Q) = 1 can vary widely depending on the structure of the underlying graph G. Subse-
quently, we study various structures of G and explore algorithms to solve Single-Unlimited.

Example 7.4.19 �ere exist connected graphs for which the smallest node-setQ is almost all the nodes.
Consider a downward-tree with one parent and n immediate children. Suppose that we leave two of the
n children unasked, and that one of these is the target node. �en the unasked node will still be present
in the candidate set. Hence, we need to ask n − 1 nodes in this scenario.

Also, there are graphs for which ∣Q∣ is O(log n). Consider a graph with nodes in two levels, r nodes
in the �rst level, and 2r nodes in the second level. We add directed edges from the nodes in the �rst level
to those in the second level, as follows: �ere is an edge from the j-th node in the �rst level to the i-th
node in the second level (always counting from the le�) if and only if there is a 1 in the j-th position of
the binary encoding of i.

In this case, if we ask all r nodes in the �rst level, we only need to ask at most r additional nodes in
the second level (precisely those corresponding to 1, 2, 4, . . . , 2r−1, since each of these r additional nodes
in the second level has a single parent, and so if the parent returns YES, then it is unclear if the node or
its parent is the target node). All other nodes in the second level have a unique encoding with respect
to the r nodes in the �rst level. �us the answers returned by the r parent nodes are su�cient to infer
whether or not one of these nodes in the second level is the target node. �us, the size of ∣Q∣ = O(log n)
for this graph.
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Single-Unlimited: DAG

Our �rst result is a general scheme to solve Single-Unlimited for anyG using our results from Single-

Bounded: By repeating Single-Bounded with various values of b, it is possible to derive a solution
for Single-Unlimited, formalized in the theorem below.

�eorem 7.4.20 (Repeating Single-Bounded) If there is an algorithm that solves Single-Bounded
on a DAG in time T, then Single-Unlimited on the same DAG can be solved in O(K × T), with K =
min{log2 o, log n}, where o = size of the optimalQ.

Proof 7.4.21 �e proof involves repeating runs of Single-Bounded to �nd the smallestQ such that the
worst-case candidate set is of size 1. Below we show two approaches, that are combined by running one
step of each until one of them terminates.

�e �rst approach involves binary search. Here, we let ∣Q∣ vary between 1 and n, run Single-

Bounded and stop once the worst case candidate set size is 1 for ∣Q∣ = b, but not when ∣Q∣ = b − 1.
�is process takes O(log n) time.

�e second approach involves doubling ∣Q∣ each time starting from 1, i.e., ∣Q∣ = 1, 2, 4, 8, . . ., and
running Single-Bounded every time. Once we �nd a b such that Single-Bounded when ∣Q∣ = b has
worst case candidate set 1, then we repeat the procedure of doubling from ∣Q∣ = b/2, i.e.,∣Q∣ = b/2 +
1, b/2+2, b/2+4, . . ., recursively, until we �nd two consecutive ∣Q∣ such that one of them has worst case
candidate set of 1 and the other one does not. �us, we will do log o steps every time, and we reduce the
space of search by 1/2 every time, leading to log o such steps. �us, we have a complexity of log2 o.

�e approach is to run Single-Bounded repeatedly using either binary search on n, or by doubling b
until we locate the smallestQ for which wcase = 1.

Single-Unlimited: Downward-Forest

On a downward-forest, Single-Unlimited can be solved in O(n):

�eorem 7.4.22 (Downward-Forest) On a downward-forest, we need to ask almost all nodes (except
at most one) in order to solve Single-Unlimited.

Proof 7.4.23 Consider all leaf nodes across all trees in the forest. Each leaf node has a single parent.
Firstly, it is easy to see that we need to ask all leaves. If not, consider a leaf node a. Let its parent be b.
If we do not ask a, but b returns YES, (but no other child of b returns YES) then it is not clear if the
target node is a or b. �erefore, we need to ask a. �e same argument can be used for all leaves. Now
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assume all questions at leaves return a NO answer (e�ectively, leaves can be removed from the tree.) �e
argument can be repeated for each parent of the leaves as well. We then arrive at the roots of each of
the trees in the forest and their children. We cannot leave two of the roots unasked because we cannot
distinguish between them without asking a question at both of them. However, we can avoid asking a
question at one of the roots because if we get a NO response from all other trees as well as children of
that node, then that node has to be the target node.

�e main insight in the proof is that if we leave a node unasked, then on getting a NO answer from

all the children of the node and a YES answer from the parent of the node, we havewcase > 1 because
we cannot distinguish between the node and its parent. However, in the general case of several trees

in the forest, one of the roots need not be asked. �is is because there is a single target node, and if

all children of this root as well as everything else returns NO, then this root has to be the target node.

7.5 Multiple Target Nodes

In theMulti version of the problem, there exists a target set U∗ ⊆ V , which denotes the unknown set
of nodes we wish to discover by asking questions. Unlike the Single case, the size of the target set can

be any ∣U∗∣ ≥ 1 and is unknown. �e only constraint we are given is that the target nodes satisfy the
independence property, i.e., no two nodes in U∗ are related.

Computation of the candidate set for the Multi problem can be found in Section 7.3. To recap,

a single question at u lets us exclude from the candidate set either pset(u) (if the answer is YES) or
rset(u) (if the answer is NO).
To incorporate the independence property in de�ning a worst-case candidate set, we de�ne the

function ip on a set of nodes to return true if and only if the set of nodes satisfy the independence
property. Given a setQ of nodes, we rede�ne theWorst-Case Candidate Set to be:

wcase(Q) = max
U⊆V , ip(U)=true

∣cand(Q,U)∣

Next we study the Bounded (Section 7.5.1) and Unlimited (Section 7.5.2) versions of the catego-

rization problem for theMulti case.

7.5.1 Multi-Bounded

In this section we consider the bounded categorization problem for a target set of nodes, formally

stated below.
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Figure 7.4: Hardness Proof forMulti-Bounded

De�nition 7.5.1 (Multi-Bounded) (Bounded Search for a target set.) Given a parameter b, �nd a set
Q of nodesQ ⊆ V , ∣Q∣ = b to ask questions such that wcase(Q) is minimized.

We present algorithms and complexity results forMulti-Bounded, examining various properties of

the structure of the graph G.

Multi-Bounded: DAG

In this section, we establish the overall complexity of Multi-Bounded for an arbitrary DAG. We �rst

show an NP-hard lower bound, and follow it with an upper bound of ΣP2 .
3 Bridging the gap between

our lower and upper bounds is an open problem.

�e following theorem establishes the NP-hardness of Multi-Bounded. As in Single-Bounded,

we use the max-cover problem to prove NP-hardness, although the details of our reduction need to

be modi�ed for theMulti-Bounded problem.

�eorem 7.5.2 (Lowerbound) �eMulti-Bounded problem is NP-Hard in n and b.

Proof 7.5.3 We give a reduction from the NP-hard max-cover problem: Given m items, n sets, and an
integer b, the goal is to choose b sets that cover the most number of items.

Given an instance of the max-cover problem, we construct an instance ofMulti-Bounded with the
following DAG containing three layers of nodes, as depicted in Figure 7.4. �e second and third layers of
nodes are identical to the �rst and second layers in the proof for�eorem 7.4.6: �e second layer has one

3
Σ
P
2 corresponds to a class of problems higher than P and NP.
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node corresponding to each set and the third layer has a node corresponding to each item. �ere is an
edge from node si to the node t j i� item t j ∈ si in the max-cover instance. For each node si in the second
layer, we add m + n unique parents in the �rst layer, r i1 , r i2, . . . , r im+n, with an edge to si . We want to
solve Multi-Bounded on this constructed DAG for b questions. To solve the Multi-Bounded problem,
we will always pick nodes corresponding to sets, because they let us eliminate the maximum number of
nodes corresponding to items, in the worst case.

If we pick a node from the �rst or the third layer, we will get a YES or NO response respectively in
the worst case, allowing us to eliminate only one node from the candidate set. On the other hand, a
node corresponding to a set allows us to eliminate either m + n nodes (on YES) or the number of nodes
corresponding to items covered by that set (on NO). �us, we only pick nodes corresponding to sets. In
the worst case, none of the answers returned are YES. If any of themwere, then we would eliminate m+n
nodes per YES answer from the candidate set. On the other hand, if those answers were NO, we would
eliminate less than m nodes corresponding to items. �us, the worst-case candidate set occurs when all
answers are YES. In order to improve the worst case, we would like to cover as many nodes from the m
nodes corresponding to items by picking nodes corresponding to sets.

�us the nodes corresponding to sets that are picked inMulti-Bounded precisely correspond to the
sets that are picked in the max cover problem.

�e following theorem establishes the upperbound on the complexity ofMulti-Bounded.

�eorem 7.5.4 (Upperbound) �e decision version ofMulti-Bounded4 is in ΣP2 .

Proof 7.5.5 Given an instance of the decision version of theMulti-Bounded problem, we can express it
as an instance of ΣP2 in the following way:

∃y1∀y2[L(y2) ∨ (R(y1, y2) < X)],

where y1 corresponds to a set of nodes at which questions are asked, y2 corresponds to all possible in-
stances of the target set. L(y2) checks in PTIME whether y2 contains two nodes with a path from one
to the other: If so, it returns YES. R(y1, y2) evaluates the candidate set given y1 and y2.

4
�e decision version of Multi-Bounded is de�ned as follows: We want to test whether wcase(Q) is reduced to a size

below some τ.



www.manaraa.com

CHAPTER 7. ALGORITHM 4: CATEGORIZATION 160

Multi-Bounded: Downward-Forest

Next we considerMulti-Bounded for forests of arbitrary trees. We can extend �eorem 7.4.8 to the

case ofMulti-Bounded, which enables us to focus our attention on trees instead of forests. We then

present the main result of this section, providing a PTIME dynamic programming algorithm (Algo-

rithm 7) that solvesMulti-Bounded for downward-trees.

�emain insight in the algorithm is that if we solve the sub-problem of �nding the worst-possible

contributions to the overall candidate set while allocating b questions to a node, then these contri-
butions can be combined bottom-up to solve the problem at the parent.

For each node x, for each i ∈ {0, . . . , b}, we generate and populate array Tx[i], which contains a
set of worst-case contributions corresponding to each allocation of i questions in total to x and the
two children y and z. Each scenario is a 4-tuple, ((b1, b2), p1, p2, n)where the �rst entry denotes that
this 4-tuple arises from an allocation of b1 questions to the sub-tree under y and b2 questions to the
sub-tree under z. For this particular allocation of questions, p1 is the contribution to the candidate
set such that (a) it contains x and (b) there is a target node below x, p2 is the contribution such that
(a) it does not contain x and (b) there is a target node below x, and n is the contribution if there is
no target node below x. Note that there is no r value in each tuple (unlike Single-Bounded) since the
presence (or not) of a target node above x in the tree will not change the answers to questions in x’s
subtree if we already know that x’s subtree does/does not contain a target.

�eorem 7.5.6 (DP Algorithm) �ere exists an algorithm that solves theMulti-Bounded problem for
forests in O(b2 ⋅ n6).

Details of Algorithm forDownward Forests:

We now describe the algorithm for solving Multi-Bounded on Downward forests in detail. We de-

scribe the algorithm for a tree with arity 2, however our approach generalizes to trees with di�erent

arities.

We set Tx[0] = ((0, 0), size(x), 0, size(x)), since the worst-case contribution to the candidate
set when no questions are asked is always the entire tree under x, except 0 in the case of p2, since
the root can never be eliminated when no questions are asked. We de�ne the subtree under x to be
rset(x).
Now, we generate rules to generate a triple (pa , pb , na)by combining triples fromTy[b1] ∶ (p1, p2, n)

and Tz[b2] ∶ (p′1, p′2, n′).
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Algorithm 7:Multi-Bounded Downward-Forest

Data: G =downward-tree, b = budget
Result: optimal set of b nodes to ask questions to
for all nodes x in G, bottom-up do

Tx ∶= ∅;
Tx[0] ∶= {((0, 0), size(x), 0, size(x))};
if x has 1 or 2 children then

y ∶= le� sub-child of x;
z ∶= right sub-child of x;
for i ∶ 0 . . . b do

for all b1, b2 ∶ b1 + b2 = i do
for all ((∗, ∗), p1, p2, n) in Ty[b1] and all ((∗, ∗), p′1, p′2, n′) in Tz[b2] do

pa ∶= max{p1 + n′, p′1 + n, p1 + p′1, n + n′} + 1;
pb ∶= max{p2 + p′2, p2 + p′1, p′2 + p1, p2 + n′, p′2 + n};
na ∶= n + n′ + 1;
if b1 == 0 ∧ b2 ≠ 0 then

pb ∶= p′2 + n;
if b2 == 0 ∧ b1 ≠ 0 then

pb ∶= p2 + n′;
Tx[i + 1] ∶= Tx[i + 1] ∪ {((b1, b2), pa , pb , 0)};
if i ≠ 0 then

Tx[i] ∶= Tx[i] ∪ {((b1, b2), pa , pb , na)};

compress Tx[i];

else

for i ∶ 1 . . . b do
Tx[i] ∶= {((b, 0), 1, 0, 0)};

r ∶= root of tree;
t ∶= tuple in Tr[b] that has smallest p1;
trace the origin of t until the leaves of the tree;
output the questions;

Case 1: None at root, b1, b2 nonzero. In this situation, for pa, none of the answers in any of the
sub-trees can be YES. If any answer in either sub-tree is YES, then the root node x is automatically
excluded. �erefore, none of the answers is YES, and target nodes can be in the subtree under y or z
or both or be x itself.
If there are target nodes under y but none under z, and if none of the answers are YES, we have

a contribution of p1 towards the candidate set from the sub-tree under y. Additionally, the sub-tree
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under z will make a contribution of n′ towards the candidate set (since there are no target nodes
under z). �erefore, we have a overall contribution of p1 + n′ + 1. Similarly, if there are target nodes
under z but not y, then the contribution is p′1 + n + 1. If the target node is x itself, then we get a
contribution to candidate set of size n + n′ + 1, since the target nodes are not present in the sub-trees
under y or z.
If there are target nodes under both y and z, then we have a contribution of p1+ p′1+ 1. �erefore,

in total, we have pa = max{p1 + n′ + 1, p′1 + n + 1, p1 + p′1 + 1, n + n′ + 1}.
For pb, at least one of the answers has to be a YES, only then will the root x be eliminated. �us,

the cases that we have are either that the YES came from the sub-tree under y, or the YES came from
the sub-tree under z or both. �erefore, at least one component of the contribution to the candidate
set must be either p2 or p′2. �us, the contribution could be: p2 + p′2 (when there are YES answers in
both sub-trees), p2+ p′1, p′2+ p1, p2+n′, p′2+n (when there are YES answers from only one sub-tree).
For na, we simply have worst-case contribution to be n + n′ + 1.
Case 2: None at root, b1 zero, b2 nonzero. For pa, the root will remain i� there is no YES answer to
a question in the sub-tree under z. Since we have p1 = n = size(y), the size of the sub-tree under y,
the same equation applies, i.e., the sub-tree under y contributes p1 or n, while the sub-tree under z
contributes p′1 or n′, and x contributes 1.
For pb, at least one of the answers has to be a YES, only then will the root be eliminated. �us,

a YES has to come from the sub-tree under z. �erefore, z has to contribute p′2, while y contributes
size(y) to the candidate set. For na, we have worst-case contribution to be n + n′ + 1.
Case 3: root, b1, b2 nonzero. For pa, the root will remain in the candidate set i� there is no YES
answer to a question under either of the sub-trees. �erefore, the target node can either be the root,

or under y or z or both. �us, we have, as before, pa = max{p1+n′+1, p′1+n+1, p1+ p′1+1, n+n′+1}.
For pb, the answer from the root has to be a YES. Additionally, since the root is eliminated, at

least one other answer is a YES. �us, we have the same potential worst-case contributions: p2 + p′2
(when there are YES answers in both sub-trees), p2 + p′1, p′2 + p1, p2 + n′, p′2 + n (when there are YES
answers from only one sub-tree). For na, since we get a NO answer from the root, na = 0.
Case 4: root, b1 zero, b2 nonzero. For pa, the root will remain in the candidate set i� there is no YES
answer to a question under either of the sub-trees. �erefore, the target node can either be the root,

or under y or z or both. �us, we have, as before, pa = max{p1+n′+1, p′1+n+1, p1+ p′1+1, n+n′+1}.
(�e same equation works since p1 = n = size(y).)
For pb, the answer from the root has to be a YES. Additionally, since the root is eliminated, at

least one other answer is a YES. �us, we have a contribution of p′2 from z and a contribution of
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size(y) from y. For na, since we get a NO answer from the root, na = 0.
Case 5: root, b1, b2 zero For pa, the root will remain in the candidate set. However, the same equation
holds, i.e., pa = max{p1 + n′ + 1, p′1 + n + 1, p1 + p′1 + 1, n + n′ + 1}, since p1 = n = size(y) and
p′1 = n′ = size(z).
For pb, the answer from the root has to be a YES. Since there is no way the root is getting elimi-

nated, we get pb = 0. For na, since we get a NO from the root, na = 0.
For the case when x has a single child y, if we create a dummy node z with a single tuple Tz[0] =

((0, 0), 0, 0, 0), then the same equations given above hold for each of the cases.
�e approach above can be generalized to l-ary trees as well.

7.5.2 Multi-Unlimited

Finally, we address the problem of unlimited categorization:

De�nition 7.5.7 (Multi-Unlimited) (Unlimited Search in a DAG for a target set) Find the smallest set
of nodes Q ⊆ V to ask questions such that ∀U∗ ⊆ V satisfying ip(U∗) = 1, we have ∣cand(Q,U∗)∣ =
∣U∗∣.

�e following theorem shows an interesting result that the Multi-Unlimited problem is “trivi-

alized” by the fact that questions need to be asked at all nodes to ensure that no extraneous nodes

remain in the candidate set.

�eorem 7.5.8 (Triviality) �e optimal solution to an instance ofMulti-Unlimited is Q = V, i.e., we
need to ask a question at every node in the graph.

Proof 7.5.9 Consider Figure 7.5, abstractly representing a connected component of the input graph, fo-
cusing on any node n. We prove that we need to ask a question at n in order to ascertain if n ∈ U∗.
Suppose we don’t ask a question at n. Let the questions asked at all of the ancestors of n, i.e., A, return
YES, while questions at all of the descendants of n, i.e., D, return NO. In this case, it is not clear if n
is in U∗ or not. It is possible that n is in U∗, in which case none of the nodes in A form part of U∗.
Otherwise, if n ∉ U∗, then there may be many nodes from A which are part of U∗.

Intuitively, we need to ask a question at every node x because if we get a YES response from all
of x’s ancestors, and a NO response from all of x’s descendants, we cannot be sure if x is in the target
set or not.



www.manaraa.com

CHAPTER 7. ALGORITHM 4: CATEGORIZATION 164

A D
n

Figure 7.5: Triviality of Multi-Unlimited

7.6 Experimental Study

Weconducted an experimental study of our categorization algorithms using awebpage categorization

task on the real-world DMOZ concept hierarchy (http://dmoz.org). DMOZ is a human-curated

internet directory based on a downward tree of categories. �e goal is to assign websites of interest

to nodes in this downward tree. In general, human judgment is needed for this assignment.

To expedite the process of assigning new web-pages to categories, we use the categorization al-

gorithms to select which questions to ask humans. A question at the node corresponding to category

X would be of the form: does this new webpage fall under X? Questions for a given web-page can

be asked concurrently to independent humans, and the answers can then be combined to determine

the candidate set of categories.

Experimental Objectives. Our experimental study has two important features that complement

the analysis presented in previous sections. First, we study how our algorithms behave on average

(rather than worst case) for a speci�c problem over real data. Second, since the algorithm for the

Single-Unlimited problem for a downward tree is impractical, we study the performance when we

usemany iterations of the Single-Bounded algorithm. We now describe these features inmore detail.

Recall that our algorithms are provably optimal in terms of minimizing the worst-case size of the

candidate set. In our experiments, we would like to complement that theoretical analysis with mea-

surements of the actual size of the candidate set a�er obtaining answers to the questions selected by

the algorithm. By measuring the actual size, our goal is to examine whether the worst-case objective

function also corresponds to good average-case performance.
One algorithm we could use for the webpage categorization task is Single-Unlimited. �is algo-

rithm selects questions to guarantee a wcase of size 1, but requires asking questions at almost every

node, which is clearly impractical. Instead, since the average case may not correspond to the worst

case, we would like to see how much the candidate set can be reduced by asking a bounded number
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Figure 7.6: Experiment on Varying the Number of Questions Asked

of questions (i.e., using the algorithms for Single-Bounded). Using the answers to these questions,

we may be able to precisely determine the target node or category. If the target node is not pre-

cisely determined, we may need to invoke the algorithm once again to issue another bounded set of

categorization questions to the crowdsourcing marketplace. �us, a practical method of using our

algorithm is in phases where in each phase we invoke the Single-Bounded algorithm in order to se-
lect b additional questions by taking the current candidate set as the input downward tree. �e net
e�ect is that each phase shrinks the candidate set further, until the target node is identi�ed or the

candidate set is small enough to assign to a human worker for the �nal solution. �is approach is a

hybrid approach between a completely o�ine approach and a completely online approach (when we

issue a single question at a time).

We present experiments to evaluate the average-case performance of our algorithms, focusing on

the following questions:

● How does the candidate set shrink
● as we vary the number of questions asked?
● as we vary the size of the input downward tree?
● when multiple phases are used?

● What is the relationship between the number of questions per phase and the total number of
phases in order to complete categorization?
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7.6.1 Methodology

Task Speci�cs. We evaluate our algorithms with a webpage categorization task on the science sub-

tree of the DMOZ hierarchy (containing over 11,600 nodes). Each task is the placement of a web

page into the hierarchy. We simulate each task by picking a node in the hierarchy where the web page

would go. �enwe simulate the crowdsourcingmarketplace by answering the questions asked by our

algorithms truthfully. If an actual crowdsourcing marketplace is used, correctness may be ensured

by having multiple humans attempt the same question (as discussed in Chapter 3).

Tested Algorithms. We implemented our algorithm for Single-Bounded for a downward tree. We

henceforth refer to this algorithm as humanGS (for Human-assisted Graph Search, which our algo-
rithms are an instance of). We compare humanGS against two baseline algorithms. �e �rst algo-
rithm, random, simply picks b randomnodes from the downward tree. �e second algorithm, termed
general-�rst, asks questions at the �rst b nodes encountered in a breadth-�rst traversal starting from
(but excluding) the root.

Recall that each algorithm is executed in phases, where each phase receives as input the graph

formed from the candidate set computed using all previous phases.

Metrics. We measure the performance of an algorithm as the actual size of the candidate set a�er

asking the questions selected by the algorithm. To ensure statistical robustness, we test each algorithm

on a set of 100 random tasks, each generated by sampling the target node uniformly at random from

the nodes of the input tree, and we report the average size of the candidate set over all tasks in the test

set. For algorithm random, we perform an additional averaging step over 10 runs of the algorithm
per test task, in order to mitigate the e�ects of random question sampling.

7.6.2 Results

E�ect of Number of Questions. �is experiment examines how the candidate set shrinks on in-

creasing the number of asked questions in one phase. We use b to denote the number of questions,
and focus on the �rst phase where the input is the complete hierarchy.

Figure 7.6 shows the average number of candidate nodes as we vary b. Note that the y-axis is
in log scale. As shown, our humanGS algorithm outperforms the baseline algorithms by an order of
magnitude for all tested values of b. In particular, humanGS reduces the candidate set to around 1000
nodes with just 10 questions (a 10-fold decrease), whereas random and general-�rst �atten out well
above 1000 nodes even a�er 100 questions. �e steep drop for general-�rst at around 45 questions
occurs because in our dataset there is a node close to the root with a large number of descendants.
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Figure 7.7: Experiment on Varying the Size of the Tree

When we select that node, a large part of the hierarchy is pruned.

E�ect of Tree Size.�e second experiment examines the performance of the three algorithms as we

vary the size of the input tree. We varied the size of the downward tree by restricting the depth of

the tree, i.e., any node at a greater depth is removed. �e target node is sampled from the remaining

nodes. We set b = 50 and focus again on a single phase.
Figure 7.7 depicts the average candidate size (again in log scale on the y-axis) against the depth of

the tree. Algorithm humanGS continues to outperform its competitors, with an increasing margin as
we approach the actual size of the tree. Its performance is matched by general-�rst only for a “trivial”
depth of three, which corresponds to an unrealistically small task.

Phase-based Operation.�e �nal experiment evaluates the overall performance of the phase-based

approach. Our goal is to examine how rapidly each algorithm identi�es the single target node of the

speci�c categorization instance.

Figure 7.8 depicts the average candidate-set size for the three algorithms as we increase the num-

ber of phases, when b = 100 for each phase, once again with the y-axis on a log scale. �e three plots
corresponding to 100 questions per phase are denoted humanGS (100), random (100) and general-�rst
(100) in the �gure. (We also plot the curve for humanGS when b = 50 and we discuss it in the next
paragraph – depicted as humanGS (50) in the �gure.) We observe that humanGS yields the fastest
decrease among the three algorithms. For instance, humanGS is able to identify the target node a�er
5 phases on average. �is compares favorably to the eight phases required by general-�rst, whereas
random was not able to decrease the candidate set below 10000 nodes for the whole experiment.
Additionally, the candidate-set size of humanGS is below 20 a�er only two phases. In contrast, the
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Figure 7.8: Experiment on Varying the Number of Phases

corresponding sizes for general-�rst and random are close to 1000 and 10000 respectively. Note that
when the candidate set size is small, we may also consider giving the candidate nodes to a human

worker in order to make the categorization.

Focusing on the two curves for humanGS, we observe a small degradation in performance from
b = 100 to b = 50 for the same number of phases. However, b = 50 yields much better overall
performance if we consider the total number of questions asked. For instance, with two phases and

b = 50 (a total of 100 questions), humanGS performs an order of magnitude better than having
a single phase with b = 100. Furthermore, humanGS requires 6 phases to discover the single target
nodewith b = 50 (a total of 300 questions), compared to 5 phases for b = 100 (a total of 500 questions).
�ese results indicate that increasing the number of phases is more bene�cial compared to increasing

the number of questions per phase. �e trade-o� of course is in latency, since the extra phases mean

additional round-trips to the crowd-sourcing service, and reduced parallelism. Examining this trade-

o� in more detail is an interesting direction for future work.

7.7 RelatedWork

Unlike previous chapters, where there are a number of related papers studying similar problems, here,

we are not aware of any prior work that studies the same or similar problems. However, we do brie�y

mention three topics studied in related work that are similar in spirit:

Active learning [169], also mentioned in earlier chapters, also studies the problem of requesting

input from experts with the maximal “information content”, similar in spirit to our problem. �is

input is only used to generate training data for machine learning tasks (especially when the current
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data is insu�cient or not informative). Additionally, most work in active learning does not ask ques-

tions to humans in parallel, and thus does not leverage the inherent parallelism in crowd-sourcing

systems.

Our problem is similar to that of decision trees [46]. In decision trees, we wish to classify an item

as belonging to one of many classes (in our case, as being one of the nodes in the DAG). Unlike deci-

sion trees, we do not have a training set (or statistics of various classes) and there are no attributes on

which a classi�er can be built. �e only questions that we can ask are those that involve reachability,

and the optimization issues that arise are very di�erent in our case.

�ere are other domains with optimization problems that involve searching with a budget, e.g.,

searching in a 2-dimensional area for oil [140], where the aim is to �nd oil as quickly as possible

by selecting areas to drill and the depths of drilling. �ere has also been work on multi-armed ban-

dits [180] and similar stochasticmodels for searching for an optimal solution that yieldsmost revenue

in computation advertising and machine learning settings. �ese models analyze the trade-o�s be-

tween exploration vs. exploitation. �e searching model in these domains is very di�erent from ours,
and hence the solutions proposed are di�erent as well.

7.8 Conclusions

In this chapter, we focused on categorization. We explored the problem space via three orthogonal

axes: Single /Multi,Bounded / Unlimited andDAG / Downward-Forest, and developed algorithms

for all combinations. Our algorithms generate the optimal set of questions that can be asked to hu-

mans: that is, for a cost bound (b questions) and latency bound (one phase), we minimize worst-case
uncertainty.

�is chapter concludes our treatment of crowd-powered algorithms. Next, we study systems and

applications wherein our crowd-powered algorithms may be used.
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Chapter 8

Application 1: Datasi�

In this chapter, we describe our �rst crowd-powered system,DataSift1. DataSift is a crowd-powered

search toolkit that enables users to leverage crowdsourcing to get better search results. DataSift

demonstrates the usefulness of our crowd-powered algorithms, speci�cally, �ltering (Chapter 3). �is

chapter will illustrate that there aremany additional challenges, beyond core algorithms, in designing

and building crowd-powered systems and applications.

8.1 Introduction

While information retrieval systems have come a long way in the last two decades, modern search

engines still have quite limited functionality. For example, they have di�culty with:

1. Non-textual queries or queries containing both text and non-textual fragments: For instance,

a query “cables that plug into <IMAGE>”, where <IMAGE> is a photo of a socket, cannot be
handled by any current search engine.

2. Queries over non-textual corpora: For instance, a query “funny pictures of cats wearing hats,
with captions” cannot be handled adequately by any image search engine. Search engines can-
not accurately identify if a given image satis�es the query; typically, image search engines per-

form keyword search over image tags, which may not be su�cient to identify if the image

satis�es the query.

1
�is chapter is adapted from our paper [150], published at HCOMP 2013, written jointly with Ming Han Teh, Hector

Garcia-Molina, and Jennifer Widom.
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3. Long queries: For instance, a query “�nd noise canceling headsets where the battery life is more
than 24 hours” cannot be handled adequately by a product search engine. Search results are
o�en very noisy for queries containing more than 3-4 keywords. Most search engines require

users to employ tricks or heuristics to cra� short queries and thereby obtain meaningful re-

sults [16].

4. Queries involving human judgment: For instance, a query “apartments that are in a nice area
near Somerville” cannot be handled adequately by an apartment search engine.

5. Ambiguous queries: For instance, a query “fast jaguar images” cannot be handled adequately
by an image search engine. Search engines cannot tease apart queries which have multiple or

ambiguous interpretations, e.g., the car vs. the animal.

For all of these types of queries, currently the burden is on the user to attempt to express the

query using the search interfaces provided. Typically, the user will try to express his or her query in

as few textual keywords as possible, try out many possible reformulations of the query, and pore over

hundreds or thousands of search results for each reformulation. For some queries, e.g., “buildings
that look like <IMAGE>”, identifying a formulation based solely on text is next to impossible.
Additionally, there are cases where the user does not possess the necessary knowledge to come up

with query reformulations. For instance, for the query “cables that plug into <IMAGE>”, a particular
user may not be able to identify that the socket is indeed a USB 2.0 socket.

To reduce the burden on the user, both in terms of labor (e.g., in �nding reformulations and

going through results) and in terms of knowledge (e.g., in identifying that a socket is indeed a USB

2.0 socket), we turn to crowdsourcing for assistance. In this chapter, we present DataSift, a pow-

erful general-purpose search toolkit that uses human workers to assist in the retrieval process. Our

toolkit can be connected to any traditional corpus with a basic keyword search API. DataSift then

automatically enables rich queries over that corpus. Additionally,DataSift produces better results by

harnessing human computation to �lter answers from the corpus.

Figure 8.1 shows a high-level overview ofDataSift: �e user provides a rich search queryQ of any
length, thatmay include textual and/or non-textual fragments. DataSift uses an internal pipeline that

makes repeated calls to a crowdsourcing marketplace—speci�cally, Mechanical Turk [14]—as well as

to the keyword search interface to the corpus. When �nished, a ranked list of results are presented

back to the user, like in a traditional search engine. As an example, Figure 8.2 depicts the ranked

list of results for the query Q = “type of cable that connects to <IMAGE: USB B-Female socket of a
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printer>” over the Amazon products corpus [1]. �e ranked results provide relevant USB 2.0 cables
with a B-Male connector.

8VHU�SURYLGHV�ULFK�
VHDUFK�TXHU\�4 'DWD6LIW .H\ZRUG�

6HDUFK

&URZGVRXUFLQJ�
0DUNHWSODFH &RUSXV

Figure 8.1: DataSift Overview

Figure 8.2: DataSift Example

A disadvantage of our approach is that the response time will be substantially larger than with a

traditional search engine. �us, our approach is only applicable when the user is willing to wait for

higher quality results, or when he is not willing or capable of putting in the e�ort to �nd items that

satisfy his query. Our experience so far is that the wait times are of the order of 20 minutes to an

hour. (Note that users can see partial results as they come in.)

We now present some challenges in building DataSift, using our earlier example: Q = “type of
cable that connects to <IMAGE>”. We assume that we have a product corpus (e.g., Amazon products)
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with a keyword search API. Consider the following three (among others) possible con�gurations for

DataSift:

● Gather: Provide Q as is to a number of human workers and ask them for one or more re-
formulated textual keyword search queries, e.g., “USB 2.0 Cable” or “printer cable”. �en re-
trieve products using the keyword search API for the reformulated keyword search queries

and present the results to the user.

● Gather-Filter:�e same con�guration as Gather, but in addition ask human workers to �lter

the retrieved products for relevance to the query Q, e.g., whether they are cables that plug into
the desired socket, before presenting the results to the user.

● Iterative Gather-Filter: �e same con�guration as Gather, but in addition �rst ask human

workers to �lter a small sample of retrieved products from each reformulated textual query

for relevance to Q, allowing us to identify which reformulations produce better results. �en,
retrieve more from the better reformulations, e.g., more from “USB 2.0 printer cable” instead
of “electronic cable”. Finally, ask human workers to �lter the retrieved results before presenting
the results to the user.

In addition to determining which con�guration we want to use, each of the con�gurations above

has many parameters that need to be tuned. For instance, for the last con�guration, DataSift needs

to make a number of decisions, including:

● How many human workers should be asked for reformulated keyword search queries? How
many keyword search queries should each worker provide?

● How many items should be retrieved initially for each reformulation? How many should be
retrieved later (once we identify which reformulations produce better results)?

● How do we decide if a reformulation is better than a di�erent one?
● Howmany human workers should be used to �lter each product for relevance to Q? Here, we
may certainly reuse results from Chapter 3.

● How should the cost be divided between the steps?
Our current implementation ofDataSift is powerful enough to be con�gured to match all of the

con�gurations we have described, plus others. We achieve this �exibility by structuring the toolkit as

six plug-and-play components that can be assembled in various ways, described in detail in the next

section. In this chapter, we present and evaluate a number of alternative con�gurations forDataSift,

and identify good choices for the parameters in each con�guration.
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8.1.1 Outline of Chapter

Here is an outline for the rest of the chapter:

1. We describe a number of plug-and-play components — automated and crowdsourced — that

form the core of DataSift (Section 8.2).

2. We identify a number of con�gurations forDataSiftusing the plug-and-play components (Sec-

tion 8.3).

3. We present the current implementation of DataSift, which supports all the described con�g-

urations (Section 8.4).

4. We perform a performance evaluation of these con�gurations. We show that con�gurations

that use the crowd can yield 100% more precision than traditional retrieval approaches, and

those that ask the crowd for reformulations can improve precision by an additional 100% (Sec-

tion 8.5).

5. We optimize the selected con�gurations, identifying good values for individual parameters

(Section 8.6).

8.2 Preliminaries and Components

A user enters a query Q intoDataSift, which could contain textual and non-textual fragments. Fully
textual queries or fully textual reformulations are denoted with the upper case letter TQ (denoting
text). �e corpus of items I (products, images, or videos) over whichDataSift is implemented has a
keyword search API: it accepts a textual keyword search query and a number k, and returns the top
k items (products, images, or videos) along with their ranks.DataSift makes repeated calls to both
I and the crowdsourcing marketplace, and then eventually provides the user with n items in ranked
order. (In fact, DataSift is �exible enough to provide the user with a dynamically updated ranking

of items that is kept up-to-date as DataSift evaluates the items.)

Next, we describe the components internal to DataSift. Components are categorized into: (1)

Crowdsourced Components: components that interact with the crowdsourcing marketplace, and (2)

Automated Components: components that function independent of the crowdsourcingmarketplace.

�e function signatures of the components are provided in Table 8.1. Note that the query Q and the
corpus of items I are implicit input arguments in the signatures for all these components.
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8.2.1 Crowdsourced Components

● (G) Gather Component: h, s → {TQ}
�e Gather Component G asks human workers for fully textual reformulations for Q, provid-
ing DataSift a mechanism to retrieve items (using the keyword search API) for Q (recall that
Q may contain non-textual fragments).
Given a query Q, G uses the marketplace to ask h human workers for s distinct textual refor-
mulations of Q each, giving a total of h × s textual queries. Speci�cally, human workers are
asked to respond to the following task: “Please provide s reformulated keyword search queries
for the following query:” Q. �e human workers are also able to run the reformulated query
on the corpus I to see if the results they get are desirable.

● (F) Filter Component:

{(I , TQ , rank)}, t → {(I , TQ , x , y)}
�e input to the Filter Component F is a set of items. We will ignore TQ and rank for now,
these parameters are not used by F. For each item i in the set of items, F determines whether
the item satis�es the query Q or not. �e component does this by asking human workers to
respond to the following task: “Does the item i satisfy queryQ: (YES/NO)”. Since humanwork-
ers may be unreliable, multiple workers may be asked to respond to the same task on the same

item i. �e number of humans asked is determined by designing the optimal �ltering strategy
(from Chapter 3) using the overall accuracy threshold τ (set by the application designer)—we
provide details in the section on implementation. �e number of positive responses for each

item is denoted x, while the number of negative responses is denoted y.
In the input, each item i is annotated with TQ and rank: TQ is the textual query TQ whose
keyword search result set item i is a part of. rank is the rank of i in the keyword search results
for TQ. Both these annotations are provided as part of the output of the keyword search API
call – see component R). TQ , rank are part of the input for compatibility with the calling
component, and TQ is part of the output for compatibility with the called component.

8.2.2 Automated Components

● (R) Retrieve Component:

{T} ∣ {(TQ ,w)}, k → {(I , TQ , rank)}
�e Retrieve Component R uses the keyword search API to retrieve items for multiple textual

queries TQ from the corpus. For each textual query TQ, items are retrieved along with their
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keyword search result ranks for TQ (as assigned in the output of the keyword search API call).
Speci�cally, given a set of textual queries TQi along with weights wi , R retrieves k items in
total matching the set of queries in proportion to their weights, using the keyword search API.

In other words, for query TQi , the top k × w i
∑ j w j

items are retrieved along with their ranks for

query TQi . If the weights are not provided, they are all assumed to be 1. We ignore for now the

issue of duplicate items arising fromdi�erent textual queries; if duplicate items arise, we simply

retrieve additional items from each TQi in proportion towi tomake up for the duplicate items.

● (S) Sort Component:

�e Sort Component S has two implementations, depending on which component it is pre-

ceded by. Overall, S merges rankings, providing a rank for every item based on how well it

addresses Q.
{(I , TQ , x , y)} → {(I , rank)}
If preceded by the F component, then S receives as input items along with their textual query

TQ, as well as x and y, the number of YES and NO votes for the item. Component S returns
a rank for every item based on the di�erence between x and y (higher (x − y) gets a higher
rank); ties are broken arbitrarily. �e input argument corresponding to the textual query TQ
that generated the item is ignored. NOte that while we could adapt ideas from Chapter 6

(Maximum) for sorting, we use a simpler approach here.

{I , TQ , rank} → {(I , rank)}
If preceded by the R component, then S receives as input items along with their textual query

TQ, as well as rank, the rank of i in the result set of TQ. Component S simply ignores the
input argument corresponding to TQ, and merges the ranks; ties are broken arbitrarily. For
example, if (a, TQ1, 1), (b, TQ1, 2), (c, TQ2, 1), (d , TQ2, 2) form the input, then one possible
output is: (a, 1), (b, 3), (c, 2), (d , 4); yet another one is: (a, 1), (b, 4), (c, 2), (d , 3).

● (W) Weighting Component:{(I , TQ , x , y)} → {(TQ ,w)}
For Iterative Gather-Filter (Section 8.1), the weighting component is the component that ac-

tually evaluates reformulations. �e component always follows F, using the results from F to

compute weights corresponding to how good di�erent reformulations are in producing items

that address Q.
ComponentW receives as input items from the Filter Component F, annotated with x and y
(the number of YES and NO votes), and the textual query TQ that generated the items. For
each textual query TQ, given the output of the �ltering component F, the weighting compo-
nent returns a weight based on how useful the textual query is in answering Q.
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Signature Followed by

G h, s → {TQ} R

F {(I , TQ , rank)}, t → {(I , TQ , p, n)} W, S

R {T} ∣ {(TQ ,w)}, k → {(I , TQ , rank)} F, S

S {(I , TQ , p, n)} ∣ {I , TQ , rank} → {(I , rank)} —

W {(I , TQ , p, n)} → {(TQ ,w)} R

Table 8.1: Components, their function signatures (Q and I are implicit input parameters in all of these func-
tions), and other components that can follow them.

�ere are three variants ofW that we consider: W1,W2, andW3, corresponding to three dif-

ferent ways in which weights wi are assigned to TQi . For describing these variants, for conve-

nience, we introduce two new de�nitions for the output of F: for a given item, if x > y, then
we say that the item belongs to the pass set, while if y ≥ x, then we say that the item belongs to
the fail set.

● W1: For each textual reformulation TQi , we set wi to be the number of items (from that

reformulation) in the pass set.

● W2: UnlikeW1, which accords non-zero weight to every reformulation with items in the

pass set,W2, preferentially weights only the best reformulation(s). Let the size of the pass

set for TQi be xi , and let X = maxi(xi). For each reformulation TQi that has xi = X, we
assign the weight wi = 1. Otherwise, we assign the weight wi = 0.

● W3: Each reformulation is weighted on how much agreement it has with other reformu-

lations based on the results of F. For instance, if reformulation TQ1 has items {a, b}, TQ2
has {b, c}, and TQ3 has {a, d} as ranks 1 and 2 respectively, then TQ1 is better than TQ2
and TQ3 since both items a and b have support from other reformulations.
For the i-th reformulation, we setwi to be the sum, across all items (from that reformula-

tion), the number of other reformulations that have that particular item. �us: (J stands
for the indicator function)

wi = ∑
∀a from TQ i

∑
j≠i
J (a is in TQ j’s results),
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8.3 Con�gurations

Wenow describe the DataSi� con�gurations that we evaluate in this chapter. �e goal of each con�g-

uration is to retrieve n items in ranked order matching query Q. Some con�gurations may retrieve
n′ ≥ n, and return the top n items.
Given that the components described in the previous section are plug-and-play, there is a large

number of con�gurations that we could come up with; however, we focus our attention on a few that

we have found are the most interesting and important:

● RS: (Only possible if Q is textual) �is con�guration refers to the traditional information re-
trieval approach: componentR uses the queryQ to directly retrieve the top n items with ranks
using the keyword search API. In this case, component S does nothing, simply returning the

same items along with the ranks.

● RFS: (Only possible if Q is textual) From the n′ ≥ n items retrieved by component R, com-
ponent F uses humans to better identify which items are actually relevant to the query Q.
Component S then uses the output of F to sort the items in the order of the di�erence in the

number of YES and NO votes for an item as obtained by F, and returns n items along with
their ranks.

● GRS: (Gather from Section 8.1) Component G gathers textual reformulations for Q, asking h
humanworkers for s reformulations each. Subsequently,R retrieves the top n/(hs) items along
with ranks for each of these h × s reformulations. �en, S sorts the items by simply merging
the ranks across the h× s reformulations, with ties being broken arbitrarily. Items are returned
along with their ranks.

● GRFS: (Gather-Filter from Section 8.1) Component G gathers h × s textual reformulations,
a�er which component R retrieves n′/(hs) items with ranks for each of the reformulations.
�en, component F �lters the n′ items using human workers. Subsequently, the n′ items are
sorted by component S based on the di�erence in the number of YES and NO votes for each

item, and the top n are returned along with their ranks; ties are broken arbitrarily (the input
argument corresponding to the textual reformulation is ignored).

● GRFWiRFS for i = 1, 2, 3: (Iterative Gather-Filter from Section 8.1) ComponentG gathers h×s
textual reformulations, a�er which component R retrieves δ items from each of the reformu-
lations (δ is a small sample of results from each reformulation, typically much smaller than n).
Component F then �lters the set of δ × h × s items. �e output of F provides us with an initial
estimate as to how useful each reformulation is in answering the query Q.
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Subsequently, componentW (eitherW1,W2, orW3) computes a weight for each of the textual

reformulations based on the results from F. �ese weights are then used by component R to

preferentially retrieve n′ − δ × h × s items in total across reformulations in proportion to the
weight. Component F �lters the retrieved items once again. Eventually, the component S sorts

the items in the order of the di�erence between the number of YES andNO votes (ignoring the

input argument corresponding to the reformulation, and breaking ties arbitrarily), and returns

the items along with their ranks.

For now, we consider only GRFW1RFS (and notW2 orW3), which we refer to as GRFWRFS.

We will consider other variants ofW in Section 8.6.

8.4 Implementation

We provide a very brief overview of the DataSift implementation followed by details regarding the

crowdsourced components.

DataSift is implemented in Python 2.7.3 using Django, the popular web application development

library. WeuseAmazon’sMechanical Turk [14] as ourmarketplace. We leverage theBoto library [2] to

connect to Mechanical Turk, and the Bootstrap library [22] for front-end web templates. A complete

trace of activity from previous queries on DataSift, along with the results, are stored in a MySQL 5

database. �e current version of DataSift connects to four corpora: Google Images [10], YouTube

Videos [25], Amazon Products [1], and Shutterstock Images [19].

We now provide speci�cs regarding the implementation of the crowdsourced components:

● (G) Gather Component:

Using the search queryQ provided, componentG issues AmazonMechanical Turkmicrotasks,
also called Human Intelligence Tasks (HITs) that solicits textual reformulations from human

workers. Here, we discuss some of the design features of the HIT seen by a human worker.

Humans are allowed to re�ne their reformulations before submission by using a “test search”

feedback loop to probe their reformulations against the corpus. �e top ten results from the

corpus for the corresponding reformulation are displayed to the human worker so that he or

she can decide if the results are satisfactory.

Initially, we discovered that instructions were unclear, due to which humans were providing

reformulations that were simple paraphrasing of the search predicate. To gather better refor-

mulations, we added examples to the instructions to allow humanworkers to provide reformu-

lations based on contextual knowledge. One such example we provided hinted that a possible
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reformulation for Q = “SF bridge; night scene” might be “golden gate bridge night”. In addi-
tion, we extracted and included tips from Google’s “Basic Search Help” [13] to enable better

reformulations.

�e gather component prevents human workers from submitting duplicate reformulations for

the same query Q, and distinct humans from submitting identical reformulations. While it
might be possible to make inferences about the relevance of a reformulation given duplicate

reformulations, we hypothesized that it is best to not have duplicates to ensure diversity and

maximize utility, and then have downstream components eliminate the less-relevant reformu-

lations.

● (F) Filter Component:

Recall that the �lter component F takes as input a set of items I , and uses human workers to
check if items satisfy query Q. As a �rst step, for every item, F asks h = 3 human workers to
verify if the item satis�es query Q. Subsequently, these ∣I∣ × 3 answers are used to learn the
average probabilities of human error (i.e., the probability that an item satis�es Q, but a human
answers otherwise, and vice versa), and the a-priori probability of an item satisfyingQ. Unfor-
tunately, sinceDataSift is completely unsupervised, we do not know the true values for items.

Instead, we use a simple heuristic to infer true values of items: if the number of YES answers

is greater than the number of NO answers, then we assume that the item satis�es Q, and that
the item does not satisfy Q otherwise. Using the true values, we can learn the probabilities of
human error and a-priori probability. �ese quantities are then input to the strategy computa-

tion algorithm from Chapter 3, which outputs a strategy that determines howmany additional

answers are needed (beyond the three initial ones) for each item. For instance, the strategy

might output that if 3 YES answers have been obtained for an item, then no additional answers

are needed, but if 2 YES and 1 NO answers have been obtained, then one more question needs

to be asked. Note that we do not use the generalized �ltering strategies from Chapter 4 since

we do not have accurate estimates of error rates of individual workers.

To reduce cost and improve accuracy, to each human worker, we provide a batch of items to

be evaluated at the same time (i.e., whether or not they satisfy Q) as one HIT on Mechanical
Turk. We set our batch size to be 50 to provide workers the ability to have enough items to

evaluate simultaneously, and yet not be fatigued by the task. To reduce bias, we randomized

the assignment of items to batches, as well as the ordering of items within a batch. Our batches

look similar to the example task in Figure 2.2.
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Easy Queries (5)

funny photo of barack obama eating things

bill clinton waving to crowd

matrix digital rain

ei�el tower, paris

5 x 5 rubix cube

Hard Queries (5)

tool to clean laptop air vents

cat on computer keyboard with caption

handheld thing for �nding directions

the windy city in winter, showing the bean

Mitt Romney, sad, US �ag

Selected Others

funny photos of cats wearing hats, with captions

the steel city in snow

stanford computer science building

database textbook

Table 8.2: List of Textual Queries for Initial Evaluation

8.5 Initial Evaluation on Textual Queries

Weperform an initial evaluation of the con�gurations described in Section 8.3. Speci�cally, we assess

how much bene�t we can get from using various crowd-powered con�gurations over the traditional

fully-automated retrieval approach (RS). Since richmedia queries are simply not supported by tradi-

tional retrieval approaches, for our initial comparison, we focus on fully textual queries. (We consider

rich media queries in the next section.)

Setup: We hand-cra�ed a set of 20 diverse textual queries (some shown in Table 8.2). We executed

these 20 queries using each of four con�gurations RS, RFS, GRS, GRFWRFS on the Google Images

corpus. For each of the con�gurations, we set n′, i.e., the total number of items retrieved, to be 50.
For both GRS and GRFWRFS, we used h = w = 3 and for GRFWRFS, we used δ = 3.

Evaluation: To evaluate the quality of the ranked results, we measure the fraction of true positives

in the top-n items, i.e., the number of items in the top n satisfying Q divided by n. Note that this
quantity is precisely precision@n. To determine the number of true positives, we manually inspected
the results, carefully checking if each item returned satis�es the query Q or not.

Basic Findings: Our results can be found in Figure 8.3. We plot the fraction of true positives in
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Figure 8.3: Precision curve

the top-n result set for each of the con�gurations, on varying the threshold n. As an example, for
threshold n = 30, GRS and RFS have precision 0.4 (i.e., 0.4 * 30 = 12 items satisfy Q on average from
the top 30), while RS has precision 0.35, and GRFWRFS has precision 0.7, 100% higher than the

precision of RS. �erefore, sophisticated con�gurations combining the bene�ts of the crowdsourced

componentsF andGperformmuchbetter than thosewith just one of those components, andperform

signi�cantly better than fully automated schemes.

Notice that the con�guration RFS is better than GRS for smaller n. Con�guration RFS retrieves
the same set of items as RS, but the additional crowdsourced �lter F component ensures that the

items are ranked by how well they actually satisfy Q. Con�guration GRS on the other hand, gathers
a number of reformulations, ensuring a diverse set of retrieved items. However, the itemsmay not be

ranked by how well they actually satisfy Q – the good items may in fact be lower ranked. As a result,
for smaller n, RFS does better, but GRS does better for larger n.
In addition, we plotted the precision curve with error bars in Figure 8.4. Unlike the other con-

�gurations, the error bars for GRFWRFS are initially zero and increase with n, indicating that GR-
FWRFS produces consistently relevant results for the top 5 items. GRS has initial error bars that are

higher than the rest because the top results might be relevant to one of the reformulations but not to

Q. However, as more results are considered, its easier to �nd items that are relevant to the original
query Q.
Summary: Crowd-powered con�gurations RFS, GRS, and GRFWRFS outperform RS. GRFWRFS

clearly does the best, with 50-200% higher precision than RS on average, followed byGRS. RFS is better



www.manaraa.com

CHAPTER 8. APPLICATION 1: DATASIFT 183

Threshold n
0.0

0.2

0.4

0.6

0.8

1.0

No
. o

f T
P 

/ T
hr

es
ho

ld
 n

RS

Threshold n
0.0

0.2

0.4

0.6

0.8

1.0

No
. o

f T
P 

/ T
hr

es
ho

ld
 n

GRS

0 10 20 30 40 50
Threshold n

0.0

0.2

0.4

0.6

0.8

1.0

No
. o

f T
P 

/ T
hr

es
ho

ld
 n

RFS

0 10 20 30 40 50
Threshold n

0.0

0.2

0.4

0.6

0.8

1.0

No
. o

f T
P 

/ T
hr

es
ho

ld
 n

GRFW1 RFS

Figure 8.4: Precision curve with error bars showing 95% con�dence interval
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than GRS for smaller n due to F, but GRS does better for larger n.

Query Di�culty: To study the impact of query di�culty on results, we ordered our queries based

on the number of true positive results in the top 10 results using the traditional retrieval approach.

We designated the top 5 and the bottom 5 queries as the easy and the hard queries respectively —
see Table 8.2 for the list of queries in each category. We then plotted the fraction of true positives on

varying n for each category. We depict the results in Figure 8.5. �e general trend is consistent with
Figure 8.3 except that for easy queries, RFS and RS outperforms GRS. �is somewhat counterintu-

itive result makes sense because for easy queries, most of the results from the traditional retrieval

approach are already good, and therefore it is more bene�cial to use the �lter component rather than

the gather component. In fact, the gather component may actually hurt performance because the

reformulations may actually be worse than the original query Q. On the hard queries, GRFWRFS

performs signi�cantly better than the other con�gurations, getting gains of up to 500% on precision

for small n.
Summary: Crowd-powered con�gurations RFS and GRFWRFS outperform RS even when restricted
to very hard or easy queries. However, the bene�ts from using crowd-powered con�gurations is more
evident on the hard queries.
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Figure 8.5: Precision curves for easy vs hard queries

8.6 Rich Queries and Parameter Tuning

We now describe our results on running the sophisticated con�gurations on rich media queries, and

also describe our experiments on choosing appropriate values for parameters for the sophisticated
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Rich Queries (5)

buildings around <IMAGE: UC Berkeley’s Sather Tower>
device that reads from <IMAGE: Iomega 100MB Zip Disk>
where to have fun at <IMAGE: In�nity Pool at Marina Bay Sands hotel in Singapore>
tool/device that allows me to do hand gestures such as in: <VIDEO: motion sensing demon-
stration using �ngers >
type of cable that connects to <IMAGE: USB B-Female socket of a printer>

Table 8.3: List of Rich Queries

con�gurations. For both these objectives, we generated a test data-set in the following manner:

Data Collection: We constructed 10 queries: 5 (new) fully textual queries and 5 queries containing

non-textual fragments — that we call rich queries. (See Table 8.3 for the list of rich queries.) For
each query, we gathered 25 reformulations (5 human workers × 5 reformulations per worker), then
retrieved a large (> 100) number of items for each reformulation, and �ltered all the items retrieved
using crowdsourced �lter component F. �is process actually provided us with enough data to sim-

ulate executions of all con�gurations (described in Section 8.3) on any parameters h, s ≤ 5, n′ ≤ 100.
Moreover, by randomizing the order of human participation in G, we can get multiple executions

for a �xed con�guration with �xed parameters. �at is, if we have h = 3, then we get (5
3
) simulated

executions by allowing G to get reformulations from any 3 workers out of 5.
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Monetary Costs: So far, while we have compared the con�gurations against each other on precision,

these con�gurations actually have di�erent costs. We tabulate the costs for each con�guration in

symbolic form in Table 8.4. In addition to precision, we will use the costs described above to compare

con�gurations in subsequent experiments.

Basic Findings: We �rst study the di�erences in performance of DataSift con�gurations on rich

queries and on textual queries. We set h = s = 3, δ = 1, and simulated the execution of con�gurations
GRS (for n′ = 50), GRFS (for n′ = 50, 100), GRFWRFS (for n′ = 50, 100). We plot the the average
fraction of true positives in the top n, divided by n, on varying n from 1 − 50, for textual queries
in Figure 8.6(a) and for rich queries in Figure 8.6(b). As can be seen in the two �gures, the relative

positions of the �ve con�gurations are similar in both �gures.

We focus on the rich queries �rst (Figure 8.6(b)). As can be seen in the �gure, for n′ = 50,
GRFWRFS has higher precision than GRFS (with the di�erences becoming more pronounced for

larger n), and much higher precision than GRS. For instance, for n = 50, GRFWRFS has 15% higher

precision than GRS and GRFS— the latter two converge at n = 50 because the same set of n′ = 50
items are retrieved in both con�gurations. For n′ = 100, GRFWRFS has higher precision thanGRFS

and GRS, as well as the plots for n′ = 50. For instance, for n = 50, GRFWRFSwith n′ = 100 has close
to 100% higher precision than GRS, and close to 50% higher precision than GRFWRFSwith n′ = 50.
�is is not surprising because retrieving more items and �ltering them enables us to have a better

shot at �nding items that satisfy Q (along with ordering them such that these items are early on in
the result set). We study the behavior relative to n′ in more detail later on. GRS continues to perform
similarly independent of the items n′ retrieved since only the top n items are considered, and since
n′ ≥ n.
Recall that GRFWRFS has the same cost as GRFS ( Table 8.4). �us, GRFWRFS strictly dom-

inates GRFS in terms of both cost and precision. On the other hand, GRFWRFS may have higher

cost than GRS, but has higher precision.

Wenowmove back to comparing text and rich queries. As can be seen in the two �gures, the gains

in precision for textual queries from using more sophisticated con�gurations are smaller than the

gains for rich queries. Moreover, the overall precision for the rich queries (for similar con�gurations)

is on average much lower than that for text-only queries; not surprising given that the rich queries

require deeper semantic understanding and more domain expertise.

Summary: On average, the relative performance of DataSift con�gurations is similar for both textual
and rich queries, with lower precision overall for rich queries, but higher gains in precision on using
sophisticated con�gurations. For both textual and rich queries, on �xing the total number of items
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Con�guration Cost

RS Free

RFS n′ × τ × C1
GRS h × s × C2
GRFS h × s × C2 + n′ × τ × C1
GRFWRFS h × s × C2 + n′ × τ × C1

Table 8.4: Breakdown of monetary costs associated with each con�guration. τ is the expected number of
human workers used to �lter the item. C1 is the cost of asking for a reformulation and C2 is the cost of getting
a human worker to �lter a single item. Typical values are C1 = $0.003 (for images), C2 = $0.10, τ = 4.

retrieved n′ and the number of reformulations, GRFWRFS does slightly better than GRFS, and does
signi�cantly better than GRS. For individual queries, the gains from using GRFWRFS may be even
higher. On increasing the number of items retrieved, GRS continues to performs similarly, while GRFS
and GRFWRFS both do even better.

OptimizingGRFWRFS: Previously, we have found that of the con�gurations considered so far, GR-

FWRFS provides the best precision. We now focus our attention on optimizing the parameters of

GRFWRFS for even better precision. Speci�cally, we try to answer the following questions:

1. How do the variations ofWi , i = 1, 2, 3 perform against each other?

2. How do the number of human workers (h) and number of reformulations per worker (s) a�ect
the results?

3. How should the sample size δ (used to evaluate the reformulations) be determined?

4. How does the number of target items n′ a�ect precision?

Questions 1 and 2: Varying h, s andVaryingW1−3:We simulate the �ve con�gurations: GRS,GRFS,

GRFW1−3RFS on the 10 textual and rich queries, for n′ = 100, δ = 3. (Similar results are seen for other
parameter settings.) We depict the fraction of true positives in the top-50 on varying h, s, as a heat
map in Figure 8.7. In general, GRFW1−3RFS has a higher number of true positives than GRFS, and

GRFS has a higher number of true positives than GRS. We see a clear trend across rows and across

columns: �xing one dimension while increasing the other increases the fraction of true positive re-

sults. For the 3 GRFWiRFS con�gurations, having 1 worker with 5 reformulations outperforms 5

workers with 1 reformulation each; additionally, recreating the bene�ts of two workers with four re-

formulations each (a total of 8) requires at least �ve workers with three or more reformulations each
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Figure 8.7: Heat map of no. of true positives for the top 50 items. Each con�guration uses δ = 3, n′ = 100. �e
3 white-colored cells on the top le� in each grid are masked due to insu�cient data. Note: view this �gure in
color!

(a total of 15). �ese results indicate that forcingmore reformulations from a humanworkers prompts

them to think deeper about Q, and provide more useful reformulations overall. We see diminishing
returns beyond three workers providing �ve reformulations each.

Summary: W1 performs marginally better than W2 and W3. �e precision improves as we increase h
and s for all con�gurations, however having fewer human workers providing more reformulations each
is better than more human workers providing fewer reformulations each.

Question 3: Varying δ (size of retrieved sample) in GRFW1−3RFS:We �xed n′ = 100, and plotted
the number of true positives in the top 50 items as a function of the number of the number of items

sampled δ. �e results are displayed for h = s = 5 in Figure 8.8, and for h = s = 3 in Figure 8.9.
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Figure 8.8: E�ect of varying sampled items δ in GRFW1−3RFS. Using n′ = 100, n = 100, h = s = 5

We focus �rst on h = s = 5. Since the total number of items retrieved n′ is �xed, there is a trade-
o� between exploration and exploitation: If δ = 1, then a total of h × s × δ = 25 items are sampled and
evaluated, leaving us n′ − 25 = 75 items for the second phase of retrieval. On the other hand, if δ = 3,
then a total of h × s × δ = 75 items are sampled and evaluated — giving us a better estimate of which
reformulations are good, however, we are le� with only n′ − 75 = 25 items to retrieve from the good
reformulations. With δ = 1, we do very little exploration, and have more budget for exploitation,
while with δ = 3, we do a lot of exploration, and as a result, have less budget for exploitation.
Figure 8.8 depicts the e�ects of exploration versus exploitation: the number of true positives

for all three plots increases as δ is increased, and then decreases as δ goes beyond a certain value.
When δ = 0, the con�gurations are identical to one another and have the same e�ect as GRFS.
Increasing δ by 1 gives a ≈15% improvement in precision of results with the exception ofGRFW3RFS.

GRFW3RFS (which uses a weighting component based on the agreement across reformulations)

shows a dome-shaped curve which peaks at 1-3 items. As δ is increased further, the number of true
positives decreases as n′ is wasted on exploration rather than exploitation.

�e results in Figure 8.9 are similar, however,GRFW2RFS’s trend is erratic. �is is because taking

the single best-looking reformulation may not be a robust strategy when using smaller h and s. For
δ = 0 and 1, for both �gures, the number of true positives for GRFW2RFS is similar to GRFW1RFS.

�is is expected since the weighting approach used is similar in practice for the two corner cases.

Summary: On �xing the total number of items retrieved n′, retrieving and �ltering a sample of δ = 1
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Figure 8.9: E�ect of varying sampled items δ in GRFW1−3RFS. Using n′ = 100, n = 100, h = s = 3

items from each reformulated query is adequate to �nd the best queries fromwhich to retrieve additional
items.

Question 4: Varying Target Number of Items n′: Figure 8.10 shows the e�ect of varying the number
of retrieved items n′ on the number of true positives in the top 50 items. We use h = s = 4 for each
con�guration, and δ = 3 for GRFWRFS. As is evident from the plot, GRS is unable to e�ectively

utilize the additional items retrieved when n′ is increased. On the other hand, we see a positive trend
with the other two con�gurations, with diminishing returns as n′ increases. Note that for GRFS and
GRFWRFS cost is directly proportional to n′ (ignoring a �xed cost of gathering reformulations) —
see Table 8.4 — so the �gure still holds true if we replace the horizontal axis with cost.

Summary: �e fraction of true positives increases as n′ increases, with diminishing returns.

8.7 RelatedWork

To the best of our knowledge, we are the �rst in addressing the problem of designing a rich general-

purpose search toolkit augmented with the power of human computation. By themselves, traditional

information retrieval techniques are insu�cient for our human-assisted retrieval task. On the other

hand, existing crowd-powered systems, including Soylent [41], CrowdPlan [126], Clowder [65], and

Turkit [130] do not address the problem of improving information retrieval.

Unlike social or collaborative search, e.g., [26,97,143,144], we do not leverage the social network,
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Figure 8.10: E�ect of varying target number of items n′

and the system moderates the interaction using reformulations and �ltering to ensure high quality

results.

8.8 Conclusion

We presented DataSift, a crowd-powered search toolkit that can be instrumented easily over tradi-

tional search engines on any corpora. DataSift is targeted at queries that are hard for fully automated

systems to deal with: rich, long, or ambiguous queries, or semantically-rich queries on non-textual

corpora. We presented a variety of con�gurations for this toolkit, and experimentally demonstrated

that they produce accurate results — with gains in precision of 100-150% — for textual and non-

textual queries in comparison with traditional retrieval schemes. We identi�ed that the best con-

�guration is GRFW1RFS, and identi�ed appropriate choices for its parameters. We leveraged our

optimized crowd-powered algorithms—speci�cally, �ltering (Chapter 3)—in designing the compo-

nents of DataSift.
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Chapter 9

Application 2: Peer Evaluation inMOOCs

In this chapter, we introduce our second crowd-powered application: peer grading in online courses.

We demonstrate that peer grading is in fact an instance of crowd-powered �ltering, and we show that

algorithms from Chapters 3 and 4 can be pro�tably employed for peer grading.

9.1 Introduction

MOOCs (Massive Open Online Courses) [36] are revolutionizing the world of education. �ere are

hundreds of courses being o�ered by institutions or organizations such as Coursera [4], Udacity [23],

and EdX [8], and each of these courses are being taken by thousands of students worldwide. It is

estimated that (as of 2013) close to 2Million students have signed up for accounts with Coursera, one

of the primary MOOC providers [9].

Evaluating students inmany of theseMOOCs requires human expertise: for instance, it is impos-

sible to grade an essay or a mathematical proof completely automatically. Further, most courses in

the humanities, e.g., poetry, sociology, and literature, evaluate student learning and comprehension

on more than just multiple-choice questions, requiring human expertise in evaluations.

Given that thousands of students are taking each of these courses, it is prohibitively expensive for

theMOOCproviders to pay graders to evaluate student submissions. As a result, these providers have

turned to peer evaluations, i.e., having students evaluate each other’s work, as the primarymechanism

for grading.

Peer evaluation is a large scale application of crowd-powered �ltering: for each student submis-

sion, the peer evaluation system needs to decide how many student graders would need to eval-

uate that submission in order to correctly determine the true grade for that submission. Student

192
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graders may make mistakes while evaluating submissions, and therefore, we may need multiple stu-

dent graders to evaluate each submission. Since student grader time is a limited resource, we would

rather have graders evaluate student submissions for which there is more uncertainty regarding the

true grade, instead of submissions for which the true grade is fairly certain.

�e goal this chapter is two-fold: �rst, we demonstrate that the crowd-powered �ltering algo-

rithms we developed in Chapters 3 and 4 are useful in the peer evaluation application and provide

higher quality results than standard heuristics currently in use in the peer evaluation system; second,

we evaluate our generalized algorithms in Chapter 4 and compare it to the simpler algorithms in

Chapter 3.

9.2 Peer Evaluation Experiments

We describe the dataset and the setting �rst, followed by our experimental methodology.

Dataset Description: We validate our algorithms on a real MOOC course dataset — the Human

Computer Interaction (HCI) course o�ered during the Fall 2012-13 quarter at Stanford. �e HCI

course involved around 1000 students, who were evaluated on �ve assignments, each containing �ve

questions, for a total of 25 questions. �us, the total number of student submissions (across all ques-

tions) was 25000. �e course relied entirely on evaluation by peer graders to judge the quality of the

student submissions for each question. Each submission was graded independently by 10 (randomly

selected) student graders on average, each grader providing a score between 0–5, both inclusive, i.e.,

one of six scores. �is dataset is ordered, that is, for every submission, the scores provided by the ten

graders are listed in the order in which they were received. For each score assigned to a submission,

the identity of the grader who provided the score is also recorded as part of the dataset.

Mapping to Filtering:We treat each student submission on a question as an item to be scored on a

scale from 0—5 (both inclusive). �us, we are operating under the scoring generalization described

in Section 4.4.6 in Chapter 4, instead of �ltering items as being YES/NO (which was the focus of

Chapter 3). Since there are 25 questions, each answered by 1000 students, we have a total of 25000

items to be scored.

Grader Evaluation: �e dataset also contains a set of 250 “test” submissions that were graded by all

1000 graders, as well as the course sta� (instructors or TAs). �ese test submissions allows the peer

evaluation system to calibrate the error rates of each grader prior to peer evaluation.

Since we are scoring items rather than performing binary �ltering, the error rates or accuracies
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for each grader (or worker) wk are of the following form:

p(i , j)(wk) = Pr[Score assigned by wk is i∣V = j]

for all i , j ∈ 0 . . . 5. �us, p(i , j) represents the probability that a worker examines an item with sta�
score j, and assigns it a score of i. Since we have 6 possible scores, each grader’s error rate is therefore
de�ned by a set of 36 p(i , j) values. We set the grader’s error rate based on his or her performance on
the 250 test submissions. Our estimate of p(i , j)(wk) is simply: the fraction of items whose sta� scores
are j that the worker wk judged to be i instead, over the total number of items with a sta� score of j.

Maximum Likelihood Score: We assume that an item can only have a score j ∈ 0 . . . 5, and that
graders evaluate items with accuracies (or error rates) corresponding to p(i , j). �en, the maximum
likelihood score for an item a is precisely the score j ∈ 0 . . . 5 that the item is most likely to be, based
on all existing information about a (that is, all grader evaluations of a). We de�ne this concept more
formally below.

We de�ne L( j, a), j ∈ 0 . . . 5 to be the probability that the score of item a is j, given the evidence
we have. �at is,

L( j, a) = ∏
wk ’s score for item a=i

p(i , j)(wk)

�erefore, L( j, a) encodes the product of the probabilities p(i , j) for all workers who looked at the
item, and gave it a score of i, for some i. For instance, if worker w1 gave an item a a score of 3, and
worker w3 gave a a score of 5, then:

L( j, a) = p(3, j)(w1) ⋅ p(5, j)(w3)

Now, themaximum likelihood score of an item a,V(a) is de�ned as the score j thatmaximizes L( j, a):

V(a) = argmax
j∈0...5

L( j, a)

�us, the maximum likelihood score of an item is the score that maximizes the product of the prob-

abilities of the individual grader scores, across all graders who have provided scores for the item.

�us, we use the entire dataset to assign a maximum likelihood score to each item. Note that we

are overloading V to mean both the “true value” of items, and the maximum likelihood score: this
is because for all practical purposes, the maximum likelihood score is our best estimate of the true

value of items given the entire dataset.
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Overall Goal and Methodology: �e goal of our experiments is to study the trade-o� between ex-

pected cost and expected error for the �ltering strategies output by our algorithms. Ourmethodology

to compare the algorithms is to repeat the following for each algorithm:

• For each error threshold τ ∈ [0, 1], we execute the algorithm to generate a �ltering strategy that
obeys the expected error threshold, and is optimized for minimum expected cost.

• We then simulate a run of the generated �ltering strategy on each item (i.e., each student sub-

mission) in the dataset. When the �ltering strategy requests an additional human grader score

while processing an item, then this score as well as the identity of the human grader who pro-

vided the score is retrieved from the dataset. �at is, when the �ltering strategy requests an

additional grader score, it is allowed to “see” another score for the item from the dataset (in

the order in which the scores were assigned by graders in the �rst place).

• When the simulation of the strategy on each item terminates, we record both the empirical cost

(the number of scores requested for that item), and the empirical error (the di�erence between

the maximum likelihood score—as assigned above—and the score output by the strategy for

the item).

• We thenmeasure the average empirical cost (i.e., total number of scores requested by the strat-

egy, as a fraction of the total number of scores available in the dataset across all items), and the

average empirical error (i.e., the average di�erence between the score assigned to an item and

its maximum likelihood score, across all items).

• We repeat the procedure above for a range of τ, recording the average empirical cost and error,
giving us a cost-error curve. �ese cost-error curves allow us to pictorially compare between

algorithms over a range of cost and error values.

Algorithms:We evaluate four �ltering algorithms adapted from Chapters 3 and 4. For all algorithms

that we study, we use the posterior-based representation (as described in Chapter 4), wherein the

state of processing is recorded using two quantities: the probability p that the item passes the �lter,
given answers seen so far, and cost spent so far, c. Since we wish to score items from 0 . . . 5, instead
of performing binary �ltering, the probability p is replaced with 5 probabilities p0, p1, . . . , p4, i.e.,
the probability that the item has score i , i ∈ 0 . . . 4, given the grader evaluations seen so far. (�e
probability p5 that the item has score 5 given the scores seen so far can be inferred from the remaining
5 values, and therefore need not be recorded.) Since we use the posterior-based representation, all
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the algorithms we study have a discretization factor δ, representing the number of intervals we divide
the probability coordinate into. As we saw in Chapter 4, the larger the δ, the more �ne-grained our
probability estimates are, but the more time it takes to compute the strategy.

�e �rst two algorithms we study are direct adaptations of those in Chapters 3 and 4 :

• Single(δ): �is algorithm, for each threshold τ, generates the cost-optimal strategy assuming
all workers are have the same error rate, using techniques from Chapter 3.

• Complete(δ):�is generalized algorithm, for each threshold τ, generates the cost-optimal strat-
egy assuming worker abilities are all distinct, using techniques from Chapter 4.

�e Single algorithm has just one worker “group” — that is, all workers are assumed to have the

same error rates, while the Complete algorithm has as many groups of workers as the number of

workers. Here, for illustration, we will use 1000 as the number of workers. Recall from Chapter 4

that, for the approximate posterior-based representation, the complexity of strategy computation is

proportional to the number of worker groups or classes. We wish to study the performance of cost

and error of intermediate algorithms, where the number of worker groups is in between 1 and 1000:

can we, by grouping workers together, derive the accuracy bene�ts of having 1000 groups, but at a

lower computational cost?

To study intermediate algorithms, where the number of groups is between 1 and 1000, we use two

simple schemes to cluster workers into k, 1 ≤ k ≤ 1000 groups, following which, we assume that all
workers within a group have the same error rate. �e two schemes (described below) come up with

a single numerical value to capture the 6 × 6 matrix of probabilities p(i , j), and then use that value to
cluster workers into groups:

• Var(k, δ): We de�ne variance as the average di�erence between the scores provided by the
grader and the sta� scores, as observed during the testing period (as described above). �is

algorithm, for each value k, �rst places graders into k equal-sized intervals based on their
variance: that is, graders are sorted based on their variance, and then we partition variance

into k intervals such that the same number of graders are in each interval. �is algorithm,
then, for each error threshold τ, generates the cost-optimal strategy, assuming that workers
within each interval have the same error rate. �at is, workers in an interval are assumed to be

equally capable at evaluating items.

Note that when k = 1000, i.e., equal to the total number of graders, then this algorithm is
identical to the Complete algorithm, since in that case, each grader will be in a partition all
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by himself or herself. Additionally, when k = 1, then this algorithm is identical to the Single
algorithm, since in that case all graders will be in the same partition. �us, this algorithm can

be viewed as an algorithm that generalizes both Single and Complete, as is the Bias algorithm

described next.

• Bias(k, δ): �is generalized algorithm is the same as the previous one, except that we parti-
tion graders based on bias; we de�ne bias as the average signed di�erence between the scores
provided by the grader and the sta� scores, as observed during the testing period.

We compare the four algorithms above to the Median heuristic:

• Median:�is heuristic is currently being used in the Coursera system for peer evaluation. For
each submission, the scores given by the randomly selected student graders are combined using

the median heuristic: that is, the median of the scores for each submission is the �nal grade
assigned to the submission.

We can generate a cost-error curve for the median algorithm by constraining the cost to be

some fraction γ of the maximum possible cost—that is, with probability γ, we include each
score assigned to an item while computing the median—and then we measure the error of

the median scores assigned (i.e., the di�erence between the median score and the maximum

likelihood score, on average across all items). We repeat this for multiple γ to give us a cost-
error curve.

We implemented all of our algorithms in Python. Our experiments were all conducted on a large

memory (100 GB) 25 processor Ubuntu server.

Experiment 1: How much bene�t do we get from optimized crowd-powered algorithms as com-

pared to simple heuristics, and howmuch bene�t do we get from considering worker abilities?

On comparing Single, Complete, and Median on cost and error, we �nd that for the same er-

ror, Complete has signi�cantly lower cost than Single, which has signi�cantly lower cost than

Median. Additionally, on �xing cost, we �nd that Complete has signi�cantly lower error than

Single, which has signi�cantly lower cost than Median. For most costs, Complete has 60% the

error of Single, and 50% the error of Median.

We use themethodology described above to trace the cost-error curve for Single, Complete (both

for δ = 10) — denoted Single-Factor10 and Complete-Factor10 respectively, and Median. �e results
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Figure 9.1: Basic Comparison

are displayed in Figure 9.1. �e �gure shows the fraction of the dataset that is “seen” or “consumed”

by each of the algorithms (i.e., the total empirical cost) on the y-axis, versus the average di�erence

between the maximum likelihood score and the estimated score (i.e., the average empirical error) on

the x-axis. As can be seen in the �gure, Complete has much lower cost and error than Single, which

has much lower cost and error than Median. For instance, on �xing cost, say at 40%, which means

that each of the algorithms requests 4 scores on average for each submission, Median has an error of

0.6, i.e., on average, the actual score assigned to a student is 0.6 away from the maximum likelihood

score. Single, has an error of 0.45, just 75% of the error of Median. Complete, on the other hand, has

an error of 0.4, just 66% of the error of Median.

�us, both our optimized crowd-powered algorithms—Complete and Single—provide signi�-

cant bene�ts in both cost and error over the algorithm currently used in the peer evaluation system.

�is is because our algorithms �nd strategies that are optimized to make the right decision at every

possible intermediate state of processing. Further, we �nd that Complete does better than single;

thus there are signi�cant bene�ts to tracking individual grader abilities rather than assuming that all

graders have the same error rate. Since Complete takes into account individual grader abilities, it can

appropriately “weigh” di�erently the same answer coming from two di�erent graders with di�erent

abilities. �e algorithm Single, on the other hand, is not able to take this information into account.

We explore this aspect in more detail, next.
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Figure 9.2: Varying Class Size

Experiment 2: How much does taking worker abilities into account impact performance? �at

is, how �ne-grained should our worker ability partitions be?

On keeping δ �xed, increasing the number of worker partitions has the e�ect of reducing error
for �xed cost, or vice versa. However, the impact of the number of partitions ismore pronounced

early on (for a small number of partitions), than later on, when the number of partitions is already

large. �us, increasing the number of partitions yields signi�cant savings in cost even though it

leads to higher computational cost while computing the strategy.

We next study how our hybrid algorithm for Variance performs in comparison with Single and

Complete, on varying k, the number of worker partitions. We �x the discretization factor to be δ, and
vary the number of partitions from 1 (i.e., Single), to 10, 100, and then �nally to 1000 (i.e., Complete).

Figure 9.2 depicts the cost-error curves for each of these four algorithms (the Variance curves are

denoted Var-Class-k-Factor10 in the �gure.) As can be seen in the �gure, there are signi�cant gains
to be had in terms of cost and error in increasing the number of grader partitions from 1 to 10, from

10 to 100, and from 100 to 1000. For instance, if we �x the error to be around 0.35, Complete gives

us a cost of 40%, Var-Class100-Factor10 (i.e., Variance with k = 100) has a cost of around 50%, Var-
Class10-Factor10 (i.e., Variance with k = 10) has a cost of around 55%, and Single has a cost of around
60%.
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As can be also seen in the �gure, small changes in k aremore likely to impact the cost-error curve
when k is small, rather than when k is already large: for instance, the impact of changing k from 1 to
10 is as pronounced as the impact of changing k from 100 to 1000.

�us, if the computing the strategy is feasible for large k, this �gure shows that it is preferable to
do so in order to take advantage of the additional cost savings to be had on increasing k. We consider
computational cost on varying k later on.
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Figure 9.3: Variance with Factor

Experiment 3: How �nely should we discretize our probabilities δ?

On keeping k �xed at 50, increasing the discretization factor has a signi�cant impact on perfor-
mance: that is, it has the e�ect of reducing error for �xed cost, or vice versa. �us, increasing the

discretization factor yields signi�cant savings in monetary cost even though it leads to higher

computational cost while computing the strategy.

For this experiment, we �x k = 50, and let δ be 4, 5, 10, or 20. (�ese values of δ were chosen
because each of these values are divisors of the number 100.) We then plot the cost-error curves for

Variance for these values of δ in Figure 9.3, and for Bias for these values of δ in Figure 9.4. As can
be seen in the �gure, the cost-error curves for δ = 4 or 5 are not as smooth as the ones for δ = 10 or
20: this is because when the probability discretization is so coarse-grained, then there is a lot more
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Figure 9.4: Bias with Factor

noise, and the trade-o� between cost and error is less predictable.

Further, as we can see here, as we increase δ, there are signi�cant gains in both cost and error.
For instance, in Figure 9.3, for error being equal to 0.35 the cost for δ = 20 is 35%, while the cost for
δ = 10 is 45%, an almost 30% increase. �e cost-error curves for 4 or 5 never manage to achieve error
0.35.

�us, these set of results dictate that we should use as high a δ as possible, to pro�t from the
gains in both monetary cost and error. However, increasing δ leads to much higher computational
and storage cost. In fact, in our experiments, we were not able to compute the strategy for δ = 25:
this is because even storing the strategy (in a memoized form) would require an array of would be

10× 255 × 50×6 ≈ 30 Billion entries, which is more than we could manage on our Ubuntu server. We
will study this aspect in more detail later.

Experiment 4: How should we partition graders?

Partitioning graders on Bias or Variance leads to similar results.

In Figure 9.5, we study the di�erence between using Bias or Variance to partition graders. We let

k = 50, and plot the cost-error curves for both Bias and Variance for δ = 10 and 20. As can be seen
in the �gure, Bias and Variance perform similarly: while it seems like Variance is better for higher δ
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Figure 9.5: Bias Vs. Variance

and Bias is better for lower δ, these changes may be attributed to experimental noise, rather than to
some systematic variation. Overall, using Bias to partition graders is just as good as using Variance.
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Figure 9.6: Computational Cost of Varying Class Size

Experiment 5: How does the computational cost of computing a strategy vary with k or δ?
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Figure 9.7: Computational Cost of Varying Class Size

�e cost of computing a strategy grows linearly with k and polynomially with δ.

We focus on the Variance worker partition scheme, and plot the cost of computing the strategy in

minutes versus δ for di�erent values of k: 1 (same as Single), 10, and 100, shown in Figure 9.6 and 9.7
(Figure 9.7 is the same as Figure 9.6, but with the y-axis in log scale). As you can see in Figure 9.6,

the time to compute the strategy increases very rapidly with δ: for instance, for k = 100, the time
varies from less than 10 minutes for δ = 4, to three hours for δ = 10, to half a day for δ = 20. �e
growth curve is convex (i.e., the rate of change increases as we increase δ) for each of the three plots
corresponding to di�erent k. Recall that in our analysis of the posterior-based representation for the
multiple scores case (Section 4.4.6 in Chapter 4), we mentioned that the complexity of representing

the strategy itself (and computing it) is proportional to a large polynomial of δ, thus the experimental
results con�rm the theoretical analysis.

�en, in Figure 9.7, the trend on increasing k is very clear: for each value of δ, the di�erence
between the log of the computation time for k = 100 and k = 10 is the same as the di�erence between
that for k = 10 and k = 1 (for all δ): �us, (a) the ratio between the time to compute the strategy is
proportional to the ratio of the k values (b) this ratio stays the same independent of δ. �us, as pre-
dicted by theoretical analysis in Chapter 4, the time to compute the strategy is linearly proportional

to k.
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Overall, the cost of computing the strategy increases polynomially with δ, and linearly with k.
On the other hand, the cost of storing the strategy still increases polynomially with δ, but is not
dependent on k.
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Figure 9.8: Relative Impacts of k and δ

Experiment 6: Should we increase k or δ?

Both k and δ a�ect cost and error signi�cantly; however, it may be more bene�cial to increase k
�rst, since it increases the complexity linearly rather than polynomially (as in the case of δ).

We focus on the Variance worker partition scheme, and consider two values each of k and δ:
k = 10, 100, and δ = 10, 20: we plot the cost-error curves for these four algorithms in Figure 9.8. We
�nd that the two curves for δ = 20, and the two curves for δ = 10 perform similarly, with the curve
for k = 100 performing better than the curve for k = 10 in both cases. However, the curves for δ = 10
performworse than δ = 20. �us, δ has a larger impact on cost and error than k. �is impact comes at
a price: the computational complexity is proportional to a large polynomial of δ, while being linearly
proportional to k. And since the number of k values is not likely to be very large (in the hundreds or
thousands, rather than the millions), it may be preferable to increase k �rst before δ.
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9.3 Conclusion

In this chapter, we demonstrated the use of our crowd-powered algorithms in yet another application:

peer evaluation inMOOCs. Our algorithms are able to provide signi�cant improvements in both cost

and error (as high as 30-50% savings in cost, and 30-50% improvement in accuracy) over schemes

used in practice. Furthermore, we demonstrated that our generalized algorithms from Chapter 4

perform signi�cantly better than the simpler algorithms from Chapter 3.

However, as we showed in this chapter, there are signi�cant computational costs in running the

algorithm to derive the optimized strategy, as well as signi�cant costs in representing and storing

the optimized strategy. �e computational costs are linearly dependent on k (the number of worker
partitions based on ability) and polynomially dependent on δ (the strategy discretization factor). We
demonstrated that there are signi�cant bene�ts to increasing the strategy parameters k and δ; we
should increase both k and δ as much as the computational capability allows. Since k is likely to be
no more than a few hundred or a few thousand in our peer evaluation system, we prefer to increase

k �rst, before δ. Of course, in other systems or other applications, we may wish to increase both k
and δ simultaneously.
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Discipline Perspectives

Human Computer Interaction (Section 10.2) Better interface design; novel in-

teraction mechanisms

Machine Learning (Section 10.3) Using humans for training data;

improving crowdsourcing

Social Science (Section 10.4) Behavioral experiments; motiva-

tions; demographic studies

Game�eory (Section 10.5) Pricing; incentives; game design

Algorithms and Databases (Sections 10.6,10.7) Using humans as data proces-

sors; optimization

Table 10.1: Summary of Perspectives

Chapter 10

RelatedWork

We organize crowdsourcing-related work in terms of research communities, the way we did in Sec-

tion 1.2. We reproduce the table we had in that section in Table 10.1, listed along with the subsection

of this chapter in which we discuss the work done in that discipline. Beforemoving to the disciplines,

we describe survey articles.

10.1 Surveys

�ere are a number of recent surveys describing various aspects of crowdsourcing research. �e

article that coined the term “crowdsourcing” �rst appeared inWired [38]; Quinn et al. [159] present a

taxonomy of the various terms (e.g., crowdsourcing, social computation, human computation) used

to describe the di�erent ways humans may participate in computer algorithms and systems. Perhaps

the most comprehensive survey on crowdsourcing is the monograph by Edith and Von Ahn [125].

206
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Doan et al. [80] is another, albeit shorter, survey on crowdsourcing technologies.

10.2 Human Computer Interaction

�eHuman Computer Interaction (HCI) community has been studying two aspects of crowdsourc-

ing: (a) development of novel crowd interfaces, along with their usage in applications, as well as novel

interfaces for users or application developers to supervise crowdsourcing (b) development of games

as a mechanism to interact with human workers.

10.2.1 Novel Worker and User Interfaces

�e novel interfaces considered by the HCI community include: an interface for collaborative con-

straint satisfaction for trip planning [196], a bounding-box interface to capture dietary information in

photographs of food [147], an interface that keeps workers on standby for tasks requiring low latency

such as photography [40] or assistance for blind people [45], and an interface that allows collaborative

editing for shortening or improving a Word document [41].

�ere is also work from the HCI community on improved interfaces for application developers

to supervise and evaluate workers, including visualizing worker behavior [166], supervising their

work [82], performing analytics on worker retention and fatigue [96], and relinquishing control of

GUIs to remote workers [124].

10.2.2 GamesWith a Purpose

Work by VonAhn’s group has studied the design of game-based interfaces to extract useful data from

human players while enticing them to continue playing [181, 182, 183, 184]. As an example, the ESP

game has players collaboratively guessing tags for images, while Peekaboom has players identifying

which portions of an image are the most “evocative” for a speci�c tag. Creating enticing games for

the purpose of extracting useful data has been applied in other �elds as well — FoldIt [62] has hu-

mans identifying stable 3-D con�gurations for proteins, while Duolingo [7] has humans translating

sentences while learning a new language.

As we mentioned in Chapter 2, our optimization techniques could also prove helpful in domains

where workers are not compensated monetarily for their contributions, but are instead enticed to

continue contributing via “gami�cation”, i.e., making it fun for the workers.
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10.3 Machine Learning and Arti�cial Intelligence

�e Machine Learning (ML) and Arti�cial Intelligence (AI) communities have been studying how

crowds may be used to get better training data, and how machine learning algorithms may be used

to improve crowdsourcing.

10.3.1 Active Learning

�e �eld of Active Learning studies the problem of adaptively selecting training data to be labeled to

improve the performance of machine learning algorithms. �e survey by Settles et al. [169] provides

a good overview of the area. Most papers in Active Learning do not assume that the labels for training

data may be human-provided (or at least that they are provided by experts rather than error-prone

workers) and therefore may contain mistakes, although a small fraction of papers do take mistakes

into account.

Papers focusing on the theory of active learning [33,35,43,44,59,68,69,94,111,142,194] try to show

that the adaptive selection strategies proposed (i.e, the procedures that select, at every point, a train-

ing example to be labeled by a human worker) provably converge to the optimal machine learning

model, under some assumptions on the selection of training data to be labeled, as well as the noise in

the underlying model. Some of these schemes su�er from a severe computational barrier: they ex-

plictly maintain all models that are still under consideration at each point during adaptive selection

of training data points. Recent approaches, such as Importance Weighted Active Learning [44] try

to eliminate this computational barrier while providing comparable guarantees.

Other papers have suggested many adaptive selection schemes that work well in practice (but

provide limited to no theoretical guarantees), including, but not limited to, uncertainty sampling

(picking the training data point that the currentmodel is least certain about) [127,171], query by com-

mittee (picking the training data point that a “committee” of current models disagree about) [170],

or error reduction (picking the training data point that is most likely to reduce the error).

Our work on optimized crowd-powered algorithms can also be used to generate correctly labeled

training data e�ciently for machine or active learning algorithms.

10.3.2 Quality Estimation

Expectation Maximization, or EM [73, 76] has been studied and used by the statistics and machine

learning communities for several decades now, with many textbooks and surveys on the topic [93,
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141, 185]. Expectation Maximization provides maximum likelihood estimates for hidden model pa-

rameters based on a sequence of E and M steps that converges to a locally optimal estimates for the

hidden model parameters.

�ere have been a number of recent papers that study the use of EM to simultaneously estimate

the answers to tasks and error rates of workers. �ese papers consider increasingly expressivemodels

for this estimation problem, including di�culty of tasks and worker expertise [163, 189], adversarial

behavior [162], and online evaluation ofworkers [131,188]. �ere has also been somework on selecting

which items to get evaluated by which workers in order to reduce overall error rate [81, 112, 171]. Our

work in this space has been on automatically identifying good workers [161], and getting guaranteed

con�dence intervals on worker abilities [108].

Our crowd-powered algorithms and systems could certainly bene�t from using some of these

techniques to better assess the quality of the work provided by workers. For instance, our generalized

�ltering algorithms in Chapter 4 assume that worker error rates are provided. �ese error rates could

certainly come from one of the techniques listed above.

10.3.3 Decision�eory

Recent work has leveraged decision theory for improving cost and quality in crowdsourcing work-

�ows: Dan Weld’s group has used POMDPs (Partially Observable Markov Decision Processes) to

design optimized work�ows [52, 65, 128, 129]. In particular, they model worker behavior, task di�-

culty, and output quality to dynamically choose the best decision to make at any step in the work�ow

(re�ne, improve, vote, or stop), and also to dynamically switch between work�ows to improve the

overall “utility”.

Kamar et al. [109] use POMDPs to study how to best utilize participation in voluntary crowd-

sourcing systems, speci�cally, Galaxy Zoo, an astronomical data set veri�ed by human workers.

Our �ltering strategies in Chapters 3 and 4 also use decision theory, speci�cally, MDPs (Markov

Decision Processes); however, unlike the papers listed above, our models are simpler, enabling us

to get guarantees for optimality for our �ltering strategies, while performing exceptionally well in

practice (as seen in Chapter 9). �e papers mentioned above do not provide theoretical guarantees

of any kind.
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10.4 Social Science

�ere is a wealth of work on exploring social and behavioral aspects of crowdsourcing, typically

by running experiments on crowdsourcing marketplaces (primarily Mechanical Turk [14]). �ese

include studies on: how honest workers are [174], what kinds of tasks workers enjoy [99,177], whether

crowdsourcingmarketplaces are a good testbed for user studies [118,120], howpricing impactsworker

behavior [98, 138], and how o�en spam or bias occurs [102, 145].

10.5 Game�eory and Pricing

�e algorithmic game theory community has been addressing economic issues in crowdsourcing:

for instance, ensuring that the marketplace is “e�cient” and that workers are compensated justly, i.e,

“fairness”, and are incentivized to put in their best e�ort, i.e., “truthfulness”. In particular, the commu-

nity has studied incentive structures in crowdsourcing marketplaces [55, 98]; they have also studied

how to improve the e�ciency of crowdsourcing [110], games with a purpose [104, 105], crowdsourc-

ing contests [53], Question-Answer (QA) forums [103], and user-generated content [88]. A recent

survey [87] summarizes the recent developments in this �eld.

While our focus has been on minimizing the number of questions asked to human workers in

designing crowd-powered algorithms and systems, we may certainly leverage research results from

this community to ensure that workers are paid a fair price for their work, and are incentivized to

answer truthfully.

10.6 Systems

We now describe three types of crowd-powered systems (note that we also covered some crowd-

powered systems with novel interfaces within Section 10.2): full-�edged database systems that sup-

port crowdsourcing, specialized crowd-powered toolkits targeted at speci�c application domains,

and generic programming toolkits that allow users or application developers to use crowdsourcing

within programs. A tutorial on crowd-powered systems can be found in [78].

10.6.1 Crowd-Powered Database Systems

Several database groups have been building crowd-powered database systems. In nearly all of these

systems, humans are regarded as a data source, and the goal is to be able to answer declarative queries
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by seamlessly leveraging data collected from humans as well as data stored in the system. �e three

primary systems are: CrowdDB [85, 86], Qurk [134, 136], and our system, Deco [153, 154, 157, 158].

�ese systems face the same trade-o�s among cost, accuracy, and accuracy that we have encountered

in the rest of the thesis. For instance, one challenge in using humans as a data source is that unlike

stored data, where the data is provided immediately, humans take time to respond. �us, all of these

systems adopt some form of asynchronous processing to ensure that processing can continue instead

of waiting for outstanding human-provided data. Of the three, Deco and CrowdDB are perhaps

the most similar to each other. Overall, our system Deco opts for more �exibility and generality

(in terms of user interfaces and uncertainty resolution), while CrowdDB makes some �xed choices

at the outset to enable a simpler and easier to understand design. Qurk is a work�ow system that

implements declarative crowdsourcing, unlike Deco and CrowdDB which are database systems.

All of these systems can bene�t from the optimized crowd-powered algorithms that we have

described in this thesis for reducing cost and latency while obtaining data from the crowd, and, at

the same time, ensuring the same accuracy.

10.6.2 Domain-Speci�c Toolkits

�ere are other domain-speci�c systems that gather data from crowds:

• Reference [54] leverages crowdsourcing for feedback in information integration pipelines. Our

work [67, 151] tackles a similar problem in information extraction pipelines.

• CrowdSearcher [49,50,51] provides a declarative platform to leverage the user’s social network

as well as QA forums to solve user tasks. In recent work, CrowdSearcher has been enhanced

with active rules that enable better user-driven control of crowds.

• DataMasster provides a declarative approach to leverage humans for data cleaning [77].

Our own system, DataSift (Chapter 8), focuses on search or information retrieval as an application

domain.

10.6.3 Generic Toolkits

�ere are many generic toolkits that enable application developers to easily leverage crowdsourcing

within various applications. However, none of these systems provide the functionality of optimiza-

tion. In e�ect, it is up to the programmer or application designer to manually optimize the work�ow

while using these programming toolkits.
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• Turkit [130], perhaps the �rst attempt at building a crowdsourcing toolkit, focuses on a work-

�ow type called iterative improvement, applicable to one-item-at-a-time tasks like text editing
or design.

• Jabberwocky [28] and CrowdForge [119] enable application developers to write parallel data

processing work�ows using humans.

• Automan [37] enables application developers to leverage crowdsourcing via subroutines in reg-

ular programs.

All of these toolkits could bene�t from using our optimized crowd-powered algorithms.

10.7 Algorithms

Other groups have also been studying crowd-powered algorithms:

10.7.1 Sorting, Max, and Top-K

Marcus et al. [135] study di�erent interfaces for crowd-powered sorting: they empirically �nd that

a hybrid algorithm that uses ratings to get a rough idea of how “good” items are, and then pairwise

comparisons between items in the same rating class, needsmuch less cost than an algorithm that uses

ratings alone or pairwise comparisons alone. It remains to be seen if similar bene�ts can be leveraged

by using di�erent interfaces for crowd-powered maximum as well.

Davidson et al. [72] design a completely o�ine pairwise-comparison-based structured tourna-

ment for crowd-powered top-k and maximum problems. In Chapter 6, we designed online algo-

rithms to select the best questions in an unstructured online setting. It may be interesting to study

the bene�ts when the two algorithms are combined.

10.7.2 Entity Resolution and Clustering

CrowdER [186] develops algorithms for crowd-powered Entity Resolution (ER) [83]. �ey select

clusters of entities to show to humans such that every pair of entities that are signi�cantly similar

appear together in a cluster. Our own work on active sampling [39] addresses a similar problem,

but makes use of a classi�er that is learned using human input. Crowd-clustering [89] tackles the

question of what tasks humans should be used for when clustering a large set of items.
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10.7.3 Other Algorithms

Amsterdamer et al. [32] use humans to verify data mining “association rules”, Lotosh et al. [132] use

humans to generate optimized plans for work�ows, and Demartini et al. [75] use crowds to verify en-

tities and relationships to enable better patternmatching for search queries. Getting it all [178] studies

the problem of recovering a set of related items using the crowd (e.g., ice cream �avors, countries,

restaurants). �ey use statistical techniques (inspired by the coupon collector problem) to estimate

exactly how many times humans must be asked to provide items before the entire set is collected.
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Chapter 11

Conclusions

11.1 Summary of Contributions

�e focus of this thesis, as stated in the introduction, was:

to develop a formalism for reasoning about human-powered data processing, and use this
formalism to design: (a) a toolbox of basic data processing algorithms, optimized for cost,
latency, and accuracy, and (b) practical data management systems and applications that
use these algorithms.

�e crowd-powered data processing algorithms that we have designed in this thesis are general-

purpose, and can be deployed within crowd-powered databases or systems, as well as within stand-

alone applications. �ese algorithms provide signi�cant gains in latency, cost, and quality.

Our crowd-powered data management applications: namely DataSift, MOOC peer evaluation,

andDeco, serve as a testbed for these algorithms, and additionally provide novel application scenarios

for crowdsourcing in practice — information retrieval, database systems, and online courses.

11.2 Future Work

We now discuss open research directions. We begin with medium-term research directions, i.e.,

research problems that may be solved in the next �ve years, and then describe long-term directions,

i.e., research problems that may require a longer time, but have higher potential for impact.

214
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11.2.1 Medium-Term Research Agenda

While crowdsourcing is now “mainstream”, there are still many common complaints originating both

from users of crowdsourcing in practice, and fromworkers. We list these complaints, as well as initial

approaches that may be used to solve them.

A. User Complaint: “Crowdsourcing takes too long!”

To deal with high human latency, we need to design systems and algorithms that provide partial

results while they do their computation. However, our crowd-powered algorithms are currently op-

timized for reducing the latency of the eventual result rather than the latency of partial results. Prior-

itizing for quick partial results (e.g., minimizing the time to generate the �rst of many results, or pro-

viding approximate results that slowly improve over time) requires us to carefully revisit the design

of algorithms and systems. We could certainly leverage principles from prior work in approximate

query processing, including online aggregation [95].

Furthermore, the latency of crowdsourcing applications can be signi�cantly reduced by more user

supervision. For instance, in DataSift, the latency of the eventual outcome can be reduced signif-

icantly by having the user supervise the execution: by removing poor query reformulations, or by

forcing the system to focus on some reformulations over others.

B.Worker Complaint: “�is task is badly speci�ed!”

Even though crowdsourcing application developers try to be as clear as possible while specifying

instructions in crowdsourcing tasks, a common complaint among workers is that the tasks are ill-

speci�ed or vague. One way to deal with ill-speci�ed or abstractly speci�ed tasks is to use humans to

break the abstract task up into smaller well-de�ned unit tasks, following which other humans work

on the individual well-de�ned unit tasks. For instance, if we wish to generalize DataSift to handle

queries like “�nd me all movies that star Nicholas Cage”, or “�nd me a discount holiday package

visiting at least two exotic locations close to each other”, then, we can have humans break the query

up into a work�ow comprising smaller tasks. As an example, humans may specify that for the �rst

query, the following work�ow will give good results: some humans provide websites containing lists

of Nicholas Cagemovies, other human workers vote on them, and then other workers extract movies

from the highest voted website. �e work�ow will need to be speci�ed in a (possibly relational)

language that is easy for the human workers to understand, generate and manipulate. Additionally,

wemay need to take into account input frommanyworkers to ensure that this intermediate work�ow

is indeed correct.

C. User Complaint: “My workers are terrible!”
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Many human workers view crowdsourcing platforms as easy ways to make money without e�ort.

�ey spend as little time on tasks as possible, giving answers to questions without careful thought.

�ere are various means of dealing with such workers, however, there has yet to be a principled study

of cost-e�ective worker quality management. Certainly, the system must monitor human worker

performance as time goes on, and try to bar workers from future work if their performance goes

below a certain quality threshold. We have performed an initial experimental study on heuristic

eviction schemes [161], but further work remains to be done.

Further, many crowdsourcing systems spend some time “training” humans, by having humans work

on training tasks, a�er which they are provided feedback on howwell they did. �en, they are allowed

to work on the “real” tasks. While users of crowdsourcing seem to believe that training helps, nobody

knows exactly how much training is required. For instance, having human workers train on 1000

tasks, then perform one real task, is clearly not cost e�ective. On the other hand, having human

workers train on one task, and then perform amillion tasks, may not give the best accuracy. If we view

human ability as nodes in a Markov chain [187], then training can help probabilistically transport a

human worker from one ability state to another ability state. A principled analysis of the Markov

chain of abilities may be very useful to users of crowdsourcing.

D. User Complaint: “Crowdsourcing costs too much!”

A common complaint from users is that crowdsourcing costs too much. If users wanted to �lter

a million items with a fairly high accuracy requirement, then the users may have to spend several

tens of thousands of dollars on �ltering. One way of reducing cost is by using Machine Learning

(ML) algorithms in conjunction with crowdsourcing. �en, crowdsourcing is only used on items

that the ML algorithm is truly uncertain about. While we have accomplished this integration with

ML algorithms for crowd-powered �ltering (see Chapter 4), it remains to be seen if we can do it for

other crowd-powered algorithms.

11.2.2 Long-Term Research Agenda

We now describe “pie in the sky” ideas for crowd-powered data management systems that are yet to

be built. Naturally, designing, optimizing, and building these systems would give rise to a host of

additional algorithmic challenges as well.

A. Interactive Analytics: Interactive data analytics is an area that seems ripe for crowdsourcing.

�ere are many users who have access to data; for instance, most local eateries have a web site, and

log visitor accesses—thus, restaurant proprietors have access to data that is potentially useful to them.
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However, most users (in this scenario, restaurant owners) are not aware of how to use or query this

data, nor do they know how to use database management systems. One way to help such users get

value out of their data is by having human workers assist in transforming the data into a structured

form amenable for analysis, in formulating queries based on the what the user wants to study, and

helping them visualize query results. In other words, having a human data analyst in the loop can

signi�cantly improve data analysis.

B. News Recommendations: Current automated news web sites such as Google News [12] su�er

from a lack of human input in the newspaper generation process, resulting in newspapers where

not all the articles are very well-written, and there is little, if any, diversity of content. On the other

hand, standard newspaper sites such as the New York Times [21] have very well-written articles, but

are lacking in personalization. We could combine the bene�ts of editorial input with automation to

provide a crowd-powered personalized newspaper, where the day’s top stories (personalized to the

user) are voted on, categorized, and organized by humanworkers. Naturally, humanswork in concert

with automated machine learning algorithms that provide initial judgments as to whether the article

may be of interest at all to the user.

C. Data Integration: While there has been a lot of progress in data integration in the last several

years (see [79] for a survey), the problem is still acknowledged to be widely open. Data integration is

another area that could signi�cantly bene�t from crowdsourcing. For instance, we could ask human

workers questions at the schema level “do these two attributes mean the same thing?”, or at the row

level “do these two rows refer to the same entity?”. Of course, once again, we will need to ask as few

questions as possible but still be able to resolve as many disparate entities or relations as possible.

11.3 Outlook

While crowdsourcing is still very much a nascent area, it is rapidly gaining ground [20], and is ex-

pected to grow even more rapidly in the next decade. It is certainly likely that at some point in the

future, most organizations will have a small core group of employees, along with a large number of

crowdsourced workers available on demand. �us, the principles and techniques developed in this

thesis — saving users millions of dollars, or days of labor, while still ensuring high-quality results —

could prove to be even more valuable in the days to come.
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